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Key Messages & Recommendations 
1) The Amazon basin is one of the most biodiverse 

areas in the world for most taxonomic groups. 
However, diversity varies geographically, with 
some groups being more diverse in the Amazon 
lowlands, whereas others thrive in the Andes.  

2) Current evaluations underestimate the true 
species richness of the Amazon, partially due to 
the difficulty of sampling in this vast region. The 
Amazon presents an incredibly high rate of 
discovery of new species (one every other day) 
and, at the current rate, it will take several 
hundred years to compile a complete list of 
plants and animals (not to mention their 
geographic distribution, natural history, and 
conservation status). Further, some groups, such 
as fungi and bacteria, are understudied. 
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3) Plant-animal interactions are a central ecological 
process in Amazonian forests, without which 
these forests would cease to exist. Such 
interactions have led to the evolution of high 
species diversity. These networks of mutualists 
and consumers determine all aspects of 
Amazonian forests and are responsible for their 
composition, species regulation, recovery from 
disturbance, and the generation of biodiversity 
that comprises the forest. 

4) It is essential to halt deforestation and forest 
fragmentation, and to establish large-scale, 
landscape-level restoration and conservation 
initiatives that maintain core areas (including 
terrestrial and aquatic environments, which are 
interdependent) and connectivity between areas. 
This is essential to securing the survival of 
species with large ranges, migration patterns, 
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patchy distributions, and/or low population 
numbers, and the diversity of functional traits 
they present. 

 
Abstract This chapter provides an overview of 
biodiversity in the Amazon, discusses the reasons 
why this region is so rich in species and ecosystems, 
and outlines some outstanding ecological processes 
that make the Amazon an icon of the natural world. 
Featured terrestrial and aquatic taxonomic groups 
illustrate how much we know about diversity in the 
Amazon, and more importantly, how much we still 
do not know. A clear understanding of biodiversity 
levels and their spatial and temporal variations is 
crucial to understanding future stability under 
different climate change, land use change, forest 
fragmentation, and deforestation scenarios and 
informing conservation and restoration efforts. 
 
Why is the Amazon so rich in species and 
ecosystems? The Amazon is the most biologically 
diverse area on the planet. Encompassing around 7 
million km2, its biodiversity is incommensurable. 
More than one tenth of the world’s species occur in 
this region1,2. It is estimated for the Amazon basin a 
richness of 50,000 vascular plants and 2,406 fish3,4; 
in the rainforest there are an estimated 427 
amphibians, 371 reptiles, 1,300 birds and 425 
mammals5. These numbers are gross 
underestimates, and in many cases biased towards 
the Brazilian Amazon. Many processes contributed 
to the evolution of such high biodiversity. 
Geological, hydro-climatic, evolutionary, and 
ecological factors are important, as well as 
disturbance regimes (see Chapters 1 and 2) and the 
cultural landscape (see Chapters 8-13). The 
relationship between biological, climatic, and 
geological data6 is important in understanding the 
environmental history, origin, and fate of 
Amazonian biodiversity. However, biogeographic 
patterns vary considerably among taxonomic 
groups, adding complexity to the analysis7. A 
fundamental driver of regional biological diversity is 
the environmental heterogeneity associated with 
the rise of the Andes, the fluctuation of seasonal 
floods in the great alluvial plains, and macro-
regional climatic events8 (Figure 3.1). 

Biological diversity patterns of selected 
taxonomic groups  
 
Vascular plants The Amazonian countries are known 
to harbor some 79,600 species of native vascular 
plants, or 20% of all of the world’s plant species9–11. 
There is no authoritative list of all vascular plants of 
the Amazon basin, but estimates for seed plants 
occurring below 1,000 m vary from 14,000 to 50,000 
species12–14. Estimates for lowland trees vary 
between 6,727 to 16,000 species, including at least 
1,000 flood-resistant trees and 388 herbaceous 
plants14–18. With such imperfect knowledge of 
Amazonian plants richness, unknown species could 
go extinct without even being described19. Endemic 
plant species from Ecuador, Peru, and Brazil 
(13,165 species) represent about 19% of the total 
endemic species (ca. 67,900) from tropical South 
America9. 
 
Fungi, algae, and non-vascular plants Traditionally 
called cryptogams, non-vascular plants include 
bryophytes, algae, lichens, and fungi, and they are 
the main drivers of the carbon and nutrient cycle 
and hydrology at high latitudes20–22. 
Biogeographically, non-vascular plants have their 
center of diversity in the Tropical Andes, and their 
species diversity is positively correlated to altitude. 
 
Often overlooked in these habitats, the total 
diversity of these taxa is typically underestimated23. 
The estimated number of algae is believed to be 
between 30,000 and 50,000, of which only half have 
been described24. Recent studies have suggested 
that fungal diversity is greater in the tropics than in 
subtropical mountainous areas25,26, although these 
areas have been studied considerably less27. 
Amazonian lichens number an estimated 150-200 
species28–31. Finally, mosses are the dominant 
vegetation cover in a wide range of ecosystems, but 
their diversity in the Amazon is relatively low. 
Although 40 to 50 species can be found in any 
particular site, the increase in additional species 
from one site to another is low32.  
 
Insects Amazonian entomofauna is amazingly rich 
along the different vertical forest strata, and 
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patterns of species distribution at large spatial 
scales are not even across the region33,34. Insects 
inhabiting the forest canopy exhibit high numbers 
of species and high population densities35,36. For 
example, ants and mosquitoes (Formicidae and 
Diptera) represent 52% and 10%, respectively, of 
the more than 300 arthropods found per square 
meter. In addition, in one study 95 different ant 
species were found on a single tree, as many as 
found in the entirety of Germany37. There is limited 
information about the centers of evolution and 
dispersal of Amazonian insects and other 
arthropods. High diversity of aquatic insects is 
associated with the environmental heterogeneity of 
the ecosystems they inhabit. Species from ten insect 
orders have specialized aquatic or semi-aquatic 
habits. The order Diptera stands out, representing 
half of known aquatic insects, notably 
Chironomidae38. The maintenance of riparian 
forests and associated aquatic environments is 
crucial to prevent the loss of species and ecosystem 
services provided by aquatic insect 
communities39,40. 
 

Fish The Amazon basin contains the world’s most 
diverse strictly-freshwater fish, with 2,406 species 
belonging to 514 genera, 56 families, and 18 orders4. 
This exceptional diversity, which represents 
approximately 15% of the world’s freshwater fishes, 
includes 58% of species found nowhere else on 
Earth (1,402 endemic species4). This includes 
marine taxa that have adapted to freshwater, such 
as Amazonian stingrays. Amazonian fishes come in 
a large array of sizes, from miniature species under 
20 mm41 to those that reach 3 m or more in length, 
such as the pirarucu (paiche, Arapaima gigas) or the 
goliath catfish (Brachyplatystoma filamentosum), both 
weighing more than 200 kg42,43. Unlike many other 
river basins, where species richness increases as 
you move downstream44,45, Amazonian species show 
decreasing West-East gradients, suggesting that 
contemporary fauna originated in the western 
portion of the basin46. This pattern also indicates 
that colonization of the eastern portion of the basin 
is still incomplete, consistent with the relatively 
recent establishment of the modern Amazon River 
about 2.5 million years ago. 

Figure 3.1 The Amazon is the most biodiverse area for most taxonomic groups. Photos show iconic species and ecosystems along 
the altitudinal gradient of the region, and selected species interactions. Background illustration by ekolara. Photos by Esteban 
Suaréz, Galo Zapata-Ríos, Fernando Trujillo, Robert Schlappal/©Superbass / CC-BY-SA-3.0 (via Wikimedia Commons). 
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Amphibians and reptiles Of the more than 8,300 
species of amphibians known to exist today47, the 
Amazon basin exhibits the highest density and the 
highest number of endangered species48–50. 
Amphibian biodiversity patterns display 
considerable variation within the Amazon basin 
(Figure 3.2), often driven by topography, hydrology, 
evolutionary history, and ecology51. Amphibian 
groups such as the tree frogs, monkey frogs, and 
poison-arrow frogs are more diverse in the lowland 
rainforests, whereas others, such as glass frogs, 
harlequin toads, and marsupial frogs, are more 
diverse in the Andean cloud forests47,52. 
 
The Amazon basin has a high diversity of reptile 
species, approximately 371, occupying a large 
variety of terrestrial and aquatic environments2,53. 
Patterns of diversity and distribution of reptiles 
indicate that species richness usually decreases 
with latitude and from west to east54–56. Studies 
carried out in the northwestern Amazon indicate a 
greater diversity of squamate reptiles relative to the 
southeastern Amazonian plain54,57. Although most 
species of reptiles are considered terrestrial, at least 
40 use the aquatic environment and depend upon it 
for their survival, including four species of 
crocodilians, two lizards, 16 turtles, and many 
snakes58,59. 

Birds The Amazon hosts the highest number of bird 
species in the world, with more than 1,000 species, 
of which about 265 are endemic60,61. The true 
number of species could be much higher, as several 
genetically-divergent lineages may represent new 
cryptic species62. Bird diversity increases with 
proximity to the Andes. Topography and ecology 
change at an elevation of approximately 500 m, 
where many lowland bird species (~800) reach their 
upper elevational range, and many Andean reach 
their lowest elevational range61,63. The wetter 
western Amazon is home to older, richer bird 
species when compared to the dryer eastern 
Amazon64. 
 
Mammals The Amazonian region harbors one of the 
richest mammalian faunas of the world, with 
approximately 140 genera and 425 species. 
Amazonian mammals account for approximately 
one-third of all South American mammalian 
diversity, or about 1,260 species65. However, the 
number of mammal species at any single locality in 
Amazonia varies greatly depending on forest type 
and habitat diversity. Mammal communities in 
seasonally flooded (várzea) forests can be 
considered relatively impoverished when compared 
with neighboring terra firme forests, although 
density and biomass can be significantly higher in 

Figure 3.2 Amphibian diversity in the Amazon basin. (A) Embryos of the Andean glassfrog Nymphargus wileyi. (B) Torrent frog, 
Hyloscirtus staufferorum. (C) Tiger-stripeed Monkey Frog, Callimedusa tomopterna. (D) Amazonian salamander, Bolitoglossa sp. Photos by 
Tropical Herping. 
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várzea than in terra firme66,67. Endemism is also very 
high, with 10 endemic genera and 144 species (34%) 
found only in the Amazon68,69. This impressive 
diversity is not distributed equally among orders; 
marsupials, rodents, and primates together 
comprise approximately 80% percent of all endemic 
species70,71. It has been suggested that mammalian 
communities in the western Amazon are the most 
diverse in the region, the Neotropics, and probably 
the world71–73. 
 
Parasites and pathogens Despite accounting for one-
third to over half of the species on Earth74, parasites 
and pathogens are usually ignored by biodiversity 
inventories and conservation studies75. For 
example, of the c. 430 wild mammal species that 
occur in the region, only 185 have been studied with 
regards to their interactions with parasites. The 
parasite groups with the highest number of species 
reported interacting with wild mammals are 
helminths (77), arthropod ectoparasites (65), 
viruses (62), protozoans (29), bacteria (12), and 
fungi (7). From those, 38 viruses, 16 arboviruses, 11 
bacteria, nine helminths, 19 protozoans, one 
ectoparasite, and seven fungi are known to be 
zoonotic and cause diseases in humans. Concerning 
the arthropod-borne viruses (arboviruses), 27 
different species have already been recorded 
infecting wild mammals in the Amazon region. 
From those, 16 species are known to be zoonotic, 
including Caraparu, Changuinola, dengue, Guama, 
Mayaro, Marituba, Murutucu, Oriboca, Oropouche, 
Piry, Saint Louis, Tacaiuma, and yellow fever, often 
shared with domesticated mammals such as pets 
and cattle.  
 
Outstanding ecological processes and 
adaptations in terrestrial and aquatic ecosystems 
 
Plant-animal interactions Plant-animal interactions 
are a central ecological process in Amazonian 
forests, without which these forests would cease to 
exist. Of the trees in the Amazonian forest 
ecosystem, 80-90% rely on animals for seed 
dispersal76,77 (Figure 3.3), and as many as 98% of 

 
iEffect of predator in consuming pray by altering the likelihood of local prey extinction126. 

plant species rely on animals for pollination78. 
Animals are coopted into dispersal by a wide variety 
of plant strategies; birds, mammals, fish, and 
insects respond to different plant strategies79.  
 
Vast areas of the Amazon are seasonally flooded, 
and fish have been shown to be critical seed 
dispersers in these forests80,81 (see Chapter 4). Many 
migratory fishes have co-evolved a mutually 
beneficial relationship with the forest. During the 
high-water season, migratory fishes invade the 
flooded forest to feed on fruit, dispersing seeds over 
large distances and improving their chances of 
germination81–83. 

Most of the roughly 150 known frugivorous fish 
species found in the Neotropics also occur in the 
Amazon basin84, where they consume at least 566 
species of fruits and seeds81. Pollination networks in 
Amazonian forests are highly diverse, complex, and 
include a wide variety of invertebrates and 
vertebrates78,85. Pollinator networks are often highly 
specialized, underscoring the role of pollinator 
conservation in preserving overall Amazonian 
biodiversity and ecosystem services86,87. 
Consumptive effectsi 18generate diversity through 
coevolutionary arms-races and control plant and 
animal biodiversity on ecological and evolutionary 
time scales.  

Figure 3.3 Seed dispersal by Rufous-bellied Euphonia (Euphonia 
rufiventris). Photo: Esteban Suárez. 
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Plant-herbivore interactions have led to the 
evolution of high species diversity by locking groups 
of organisms in evolutionary arms races of attack 
and defense (e.g., production of secondary 
compounds in trees of Protium subserratum)88,89, 
leading to a spectacular diversification in 
Amazonian chemical defenses90,91. Networks of 
mutualists and consumers determine all aspects of 
Amazonian forests, and are responsible for their 
composition, species regulation, and recovery from 
disturbance. Changes in species interactions can 
have cascading and long-term consequences for 
ecosystems92.  
 
Floods and adaptation of organisms Aquatic 
ecosystems are a complex mosaic of habitats 
influenced by floodsii19 (see Chapter 4) and nutrient 
flows. This has generated areas with high and low 
productivity and promoted complex adaptation 
processes. Many species have special adaptations to 
withstand low oxygen levels and high temperatures 
during periods of drought93–97. Other species, 
including many fishes, choose to migrate between 
main channels, lakes, and small tributaries, 
particularly the Prochilodontidae and Curimatidae 
families. Species such as the pirarucu (paiche, 
Arapaima gigas) build nests at the bottom of lakes 
and reproduce during the low water season. When 
the water level rises, they make small lateral 
migrations towards the flooded forest, where the 
males care for their young. In response to fish 
migrations, some aquatic carnivores have evolved to 
catch fish hidden among vegetation. For example, 
the Amazon River dolphin’s (Inia geoffrensis) unfused 
cervical vertebrae, long snout, and short dorsal and 
pectoral fins allow them to navigate and catch fish 
among submerged vegetation. Giant otters 
(Pteronura brasiliensis) have more or less well-
defined territories during the low water period, but 
increase their territories in the wet season to 
include flooded forest areas. Jaguars (Panthera onca) 
can spend up to three months living in the treetops 
above floodwaters, feeding especially on sloths, 
alligators, and giant otters98,99.  

 
iiThe annual inundation and drought cycle of Amazonian floodplains is the principal driving force responsible for the existence, 
productivity, and interactions of the major biota in a river-floodplain system (Chapter 4). 

The flood cycle has also generated exceptional 
adaptation processes in plants, such as those which 
can survive being submerged for several months 
(e.g., Nectandra amazonum, Symmeria paniculata) and 
those which synchronize fruiting to coincide with 
floods and the return of frugivorous fishes. Likewise, 
during floods the proliferation of aquatic vegetation 
provides food for other species, such as manatees 
and capybaras100–102.  
 
Fish migrations and floodplain nutrient flow Migratory 
fishes play important roles in aquatic food webs, 
providing crucial exchanges between different 
components of ecosystems. Amazonian goliath 
catfish of the genus Brachyplatystoma perform the 
longest known freshwater migrations. One species, 
B. rousseauxii, uses almost the entire length of the 
Amazon basin in a round trip migration of up to 
12,000 km between its spawning grounds in the 
Andes and its nursery in the estuary103–107. This 
exceptional migration involves natal homing, a 
behavior seldom observed in freshwater species, 
but common in species migrating between rivers 
and the sea, such as salmon. In this process adult 
fish usually return to the watershed where they were 
born, either in the upper Madeira104 or Amazon107. 
These extraordinary apex predators103 are under 
threat from overharvesting108–111. 
 
Fish migrations, and in particular the movements of 
detritivorous fish, play crucial roles in nutrient 
transport important for local food webs. Fishes of 
the family Prochilodontidae (Prochilodus and 
Semaprochilodus), undertake complex, large-scale 
migrations from rich white water floodplains where 
they reproduce and feed112–114 to nutrient-poor 
tributaries (black or clear waters) where they 
sustain local predatory fish species115,116. Some 
detritivorous fish also modulate nutrient cycling in 
Amazonian streams117,118, and their decline due to 
overfishing and disruption by dams can have 
profound consequences nitrogen and phosphorus 
flows119. 
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Functional diversity Functional diversity is 
understood as the value, range, and distribution of 
functional traits in a given community120,121. The 
Amazon is among the most functionally diverse 
regions on Earth for several taxa (e.g., fish122, 
plants123, amphibians124). Taxonomic and functional 
diversity are often decoupled, and for some 
taxonomic groups, functional diversity is 
considerably higher in the Amazon than what would 
be expected based on their taxonomic diversity. The 
Neotropics host approximately 40% of the world’s 
freshwater fish species, yet this same region hosts 
more than 75% of fish functional diversity. Fish 
functional diversity in the Amazon includes 
incredible variation in body form and trophic 
ecology, ranging from catfish with specialized teeth 
and jawbones for consuming submerged tree trunks 
(e.g., Cochliodon, Panaque spp), to electric fish with 
reduced eyes living in turbid waters 
(Gymnotiformes), to migratory frugivores with 
molar-like teeth that are important seed dispersal 
agents (e.g., Colossoma, Piaractus81), to elongated 
vampire catfishes that feed on blood in the gills of 
other fishes (Vandellia)125. Functional diversity 
contributes to community and ecosystem resilience 
to climate change, deforestation, or other 
disruptions. Models suggest that forests with high 
plant trait diversity will regenerate more rapidly 
than forests with low plant trait diversity following 
the loss of large trees due to climate change (see 
Chapter 23). 
 
Conclusions While the Amazon is one of the largest 
and most intact ecosystems in the world, it is also 
one of the least known biologically. Its immense 
size, diversity, and remoteness make the task of 
documenting its biodiversity extremely challenging. 
Consequently, there are both spatial and taxonomic 
biases in existing data. This, combined with our 
general lack of adequate data overall, affects our 
capacity to understand the true patterns of 
biodiversity in the Amazon. This includes questions 
such as precisely where centers of endemism are 
located and where one might find the most 
endangered species - matters of great concern for 
conservation. Nevertheless, while such limitations 
are problematic, the reality is that all ecosystems 

have data gaps, and we must make decisions using 
the best information available, recognizing that as 
we learn more, it may be wise to improve upon past 
decisions. 
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