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Chapter 5 

Amazon Assessment Report 2021 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
About the Science Panel for the Amazon (SPA) 
 
The Science Panel for the Amazon is an unprecedented initiative convened under the 
auspices of the United Nations Sustainable Development Solutions Network (SDSN). The 
SPA is composed of over 200 preeminent scientists and researchers from the eight 
Amazonian countries, French Guiana, and global partners. These experts came together 
to debate, analyze, and assemble the accumulated knowledge of the scientific 
community, Indigenous peoples, and other stakeholders that live and work in the Amazon. 
 
The Panel is inspired by the Leticia Pact for the Amazon. This is a first-of-its-kind Report 
which provides a comprehensive, objective, open, transparent, systematic, and rigorous 
scientific assessment of the state of the Amazon’s ecosystems, current trends, and their 
implications for the long-term well-being of the region, as well as opportunities and policy 
relevant options for conservation and sustainable development. 
 
 
Amazon Assessment Report 2021, Copyright @ 2021, Science Panel for the Amazon.   
This report is published under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-
NC-SA 4.0) License. ISBN: 9781734808001 
 
 
Suggested Citation  
 
Costa MH, Borma LS, Espinoza JC, Macedo M, Marengo JA,  Marra DM, Ometto JP,  Gatti LV. 2021. Chapter 5: The 
physical hydroclimate system of the Amazon. In: Nobre C, Encalada A, Anderson E, Roca Alcazar FH, Bustamante M, 
Mena C, Peña-Claros M, Poveda G, Rodriguez JP, Saleska S, Trumbore S, Val AL, Villa Nova L, Abramovay R, Alencar A, 
Rodríguez Alzza C, Armenteras D, Artaxo P, Athayde S, Barretto Filho HT, Barlow J, Berenguer E, Bortolotto F, Costa FA, 
Costa MH, Cuvi N, Fearnside PM, Ferreira J, Flores BM, Frieri S, Gatti LV, Guayasamin JM, Hecht S, Hirota M, Hoorn C, 
Josse C, Lapola DM, Larrea C, Larrea-Alcazar DM, Lehm Ardaya Z, Malhi Y, Marengo JA, Melack J, Moraes R M, 
Moutinho P, Murmis MR, Neves EG, Paez B, Painter L, Ramos A, Rosero-Peña MC, Schmink M, Sist P, ter Steege H, Val 
P, van der Voort H, Varese M, Zapata-Ríos G (Eds).  Amazon Assessment Report 2021. United Nations Sustainable 
Development Solutions Network, New York, USA. Available from https://www.theamazonwewant.org/spa-reports/. 
DOI: 10.55161/HTSD9250 



Chapter5: The physical hydroclimate system of the Amazon 

Science Panel for the Amazon 1 

INDEX 
GRAPHICAL ABSTRACT .............................................................................................................................. 5.2 
KEY MESSAGES ............................................................................................................................................ 5.3 
ABSTRACT .................................................................................................................................................... 5.3 
5.1 INTRODUCTION ..................................................................................................................................... 5.4 
5.2 MAIN FEATURES OF THE AMAZON CLIMATE .................................................................................... 5.5 

5.2.1 SPATIAL DISTRIBUTION OF CLIMATE VARIABLES .............................................................................................. 5.5 
5.2.1.1 Air temperature ................................................................................................................................................ 5.5 
5.2.1.2 Atmospheric circulation ................................................................................................................................... 5.6 
5.2.1.3 Rainfall .............................................................................................................................................................. 5.7 

5.2.2 THE ROLE OF ENSO AND OTHER LARGE-SCALE MECHANISMS .......................................................................... 5.7 
5.2.1.1 ENSO .................................................................................................................................................................. 5.7 
5.2.2.2 PDO, AMO, MJO ................................................................................................................................................. 5.8 

5.2.3. EXTREME DROUGHT AND FLOOD EVENTS ....................................................................................................... 5.8 
5.2.4 ANDEAN-AMAZON HYDROMETEOROLOGY AND VARIABILITY ............................................................................ 5.9 

5.2.4.1 Seasonal patterns .............................................................................................................................................. 5.9 
5.2.4.2 Interannual variability and extremes .......................................................................................................... 5.11 

5.3 THE AMAZON CONVECTION AND MESOSCALE CIRCULATIONS .................................................. 5.12 
5.3.1 NATURE OF THE AMAZON CONVECTION ........................................................................................................ 5.12 
5.3.2 SOLAR FORCING ........................................................................................................................................... 5.13 
5.3.3 FOREST BREEZE AND RIVER BREEZE CIRCULATIONS ....................................................................................... 5.14 
5.3.4 SEA BREEZE AND COASTAL CIRCULATIONS .................................................................................................... 5.15 
5.3.5 OROGRAPHIC-INDUCED CIRCULATIONS AND SPATIAL RAINFALL DISTRIBUTION IN THE ANDEAN-AMAZON REGION
 ............................................................................................................................................................................. 5.15 
5.3.6 THE ROLE OF EXTREME WEATHER EVENTS ON ECOSYSTEM DYNAMICS ............................................................ 5.16 

5.3.6.1 Severe storms, blowdowns, and impacts on forest ecosystem dynamics ..................................................... 5.17 
5.3.6.2 Lightning, natural fires, and impacts on vegetation structure and biome distribution ........................... 5.18 

5.4 EVAPOTRANSPIRATION ..................................................................................................................... 5.19 
5.5 MAIN CHARACTERISTICS OF THE SURFACE HYDROLOGICAL SYSTEMS IN THE AMAZON ..... 5.21 

5.5.1 SEASONALITY OF DISCHARGE ........................................................................................................................ 5.21 
5.5.2 SEASONALITY OF FLOODPLAIN DYNAMICS ..................................................................................................... 5.23 

5.6 THE ROLE OF RIVERS IN BIOGEOCHEMICAL CYCLES .................................................................... 5.23 
5.7 CONCLUSIONS ..................................................................................................................................... 5.24 
5.8 RECOMMENDATIONS .......................................................................................................................... 5.24 
5.9 REFERENCES ........................................................................................................................................ 5.25 
 



Chapter5: The physical hydroclimate system of the Amazon 
 

2 
Science Panel for the Amazon 

Graphical Abstract 
 
 

Figure 5.. Graphical Abstract 



3 
Science Panel for the Amazon 

3 

The physical hydroclimate system of the Amazon 
 
Marcos H. Costa*a, Laura S. Borma b, Jhan C. Espinoza c, Marcia Macedo d, José A. Marengo e, Daniel M. Marra f, Jean P. Omettob, 
Luciana V. Gattib

 
Key Messages  
 

● Given its tropical location enclosed by the Andes, its huge spatial extent (7.3 million km2, including 
the Tocantins), and forest cover, the Amazon River Basin is one of the most critical elements of the 
Earth’s climate system. It is the largest and most intense land-based convective center, exerting a 
strong influence on atmospheric dynamics and circulation patterns both within and outside the trop-
ics. It produces rainfall that results in the largest river discharges on Earth at 220,000 m3/s, corre-
sponding to 16-22% of the total world river discharge.  

● The Amazon Basin is mainly characterized by lowlands with a warm and rainy climate. The upper 
part of the basin includes the eastern slope of the Andes, characterized by a wide variety of mountain 
climates (cloud forest, Páramos, Yungas, Punas, etc.).  

● The El Niño-Southern Oscillation (ENSO) is the main cause of interannual variability in rainfall. ENSO 
is typically (but not exclusively) accompanied by droughts in the Amazon region, with recent severe 
droughts producing low river water levels, a high risk of forest fires, and impacts on natural river eco-
systems. In addition to ENSO, Atlantic and Pacific SST variability influence the climate of the Amazon 
at interannual and interdecadal time-scales, including extreme events. 

● In the last 15 years, the Amazon has witnessed several climate extremes: droughts in 2005, 2010, and 
2015–16 and floods in 2009, 2013, 2014, and 2017, and 2021. Some of these have been classified as 
"once-in-a-century" events. Historical records show previous droughts in 1926, 1964, 1980, 1983, and 
1998 and floods in 1953, 1988, and 1989. 

Abstract 
 
The physical hydroclimate system of the Amazon operates on several spatial and temporal scales. Large-
scale processes, including solar forcing, control the main seasonal patterns of atmospheric circulation, 
rainfall, river discharge, and flooding. For example, persistent patterns of sea surface temperature, such 
as those associated with the El Nino/Southern Oscillation, are associated with the main modes of interan-
nual and interdecadal climate variability. Mesoscale processes such as those related to topography or 
land-atmosphere interactions cause other localized circulations. While the ultimate source of water in the 
basin is evaporation from the oceans, this water is recycled through evaporation and reprecipitation be-
fore being exported back to the ocean through the flow of the Amazon River or exported in the form of 
water vapor from the basin. The abundant rainfall in the Amazon Basin (averaging 2,190 mm per year) is 
thus a consequence of intense radiative heating, low-level convergence of oceanic water vapor, and per-
manent re-injection of water vapor into the atmosphere by the rainforest itself, aided by the mechanical 
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uplifting of air by the Andes. Land surface processes partition precipitation into evapotranspiration 
(~1,220 mm per year), surface runoff, and deep drainage to the groundwater. The Amazon River system 
drains the surface and groundwater components of this abundant rainfall, forming the world’s largest wa-
tershed and feeding the world’s largest river, with a mean discharge of 220,000 m3/s. The Amazon has a 
discharge five times larger than the Congo, the world’s second-largest river. The flow is highly seasonal, 
and imbalances between the addition of water to rivers by rainfall and the rate of water export downstream 
cause seasonal flooding over a large floodplain area, with beneficial ecological and biogeochemical impli-
cations. Extreme flood and drought events are associated with intense interannual rainfall variability, 
which, in turn, influence forest fires and biogeochemical cycles.  
 
Keywords: Amazon water balance, extreme events 

5.1 Introduction 
 
The Amazon is one of the three permanent centers 
of convection in the intertropical zone (along with 
Central Africa and Southeast Asia) – i.e., one of the 
main centers of ascending air that transports en-
ergy from land to the atmosphere. It is also the 
most powerful of these three land-based convec-
tive centers, exerting strong influences on atmos-
pheric circulation both within and outside the trop-
ics. As one of the main drivers of the Hadley-
Walker circulations, the Amazon is a critical en-
ergy source to the atmosphere, removing latent 
heat from the surface by evaporation and transpi-
ration of water (a process termed evapotranspira-
tion), and releasing that heat to the atmosphere 
when water condenses and forms clouds or precip-
itation. The strength of the Amazon convective 
center is mainly due to its geographical character-
istics, including its large size, position spanning 
the equator, and the presence of the Andes moun-
tains located downwind in the basin. As explained 
throughout this chapter, the rainforest also con-
tributes to strengthening this convective center. 
The low albedo of the rainforest increases the ab-
sorbed net radiation, and the constant flux of water 
vapor to the atmosphere from the rainforest via 
evapotranspiration adds energy to the mean con-
vection fields. At the same time, it smooths sea-
sonal and interannual variability of convection and 
rainfall in the region.  
 
The region’s abundant convection and rainfall,  
along with the basin's large size, produce the 
world’s largest river, flanked by a complex network 

of channels and floodplains that transport sedi-
ments, carbon, and other nutrients. Intense sea-
sonality and interannual variability of the water cy-
cle are also dominant factors for local riverine 
communities who may have their towns either 
flooded or completely isolated depending on the 
status of this river system – dictated by the modes 
of interannual climate variability of rainfall (Ma-
rengo and Espinoza, 2016).  
 
Table 1 presents a synthesis of several estimates of 
the Amazon River Basin's long-term water balance. 
Long-term estimates of precipitation (P) show little 
variability across studies, with a median value of 
~2190 mm/yr±7%.  
 
The long-term mean runoff (R) is estimated at 1100 
mm/yr±15%, which yields a median runoff coeffi-
cient (C=R/P) of 0.51±0.08. 
 
Estimates of evapotranspiration (ET) have much 
higher uncertainties by comparison, with median 
values of ~1250 mm/yr±50%. This imbalance is 
likely because most high estimates of ET (>1500 
mm/yr) are derived from reanalysis data, which (by 
design) do not conserve mass over the long-term. If 
these high values are excluded, the median value of 
ET is closer to 1220 mm/yr±15%, with a median 
evaporative fraction (EF = ET/P) of 0.54±0.07. Over 
the long term the total rainfall must be partitioned 
either into runoff or evaporation. Table 1 shows es-
timates of this balance made in the literature – with 
many estimates splitting precipitation evenly be-
tween ET and runoff. 
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This chapter reviews the main features and the 
main large-scale and mesoscale mechanisms that 
cause the mean Amazon climate, its interannual 
and interdecadal variability, and extreme drought 
and flood events (Sections 5.2 and 5.3). The effects 
of extreme events on vegetation dynamics are dis-
cussed in Section 5.3. Next, the chapter describes 
the partitioning of precipitation into evapotranspi- 
 
ration (Section 5.4), runoff, flow seasonality, and 
floodplain dynamics (Section 5.5). Finally, the role 
of floodplains in biogeochemical cycles is dis-
cussed in Section 5.6. 
  
This chapter’s description of the Amazon's physi-
cal hydroclimate system also serves as an intro-
duction to the biosphere-atmosphere interactions 
discussed in Chapters 6 and 7, and to climate 
change as discussed in Chapter 22. Chapter 6 dis-
cusses the influence of the physical hydroclimate 
system on biogeochemical cycles, whereas Chapter 
7 presents the rainforest's role in the water and en-
ergy exchange of this coupled biosphere-atmos-
phere system. Chapter 22 presents the long-term 
variability and changes in temperature and hydro-
meteorology in the Amazon.  
 
5.2 Main features of the Amazon climate 
 

 
5.2.1 Spatial distribution of climate variables 
 
5.2.1.1 Air temperature Due to high, relatively con-
stant incoming solar radiation, air temperature in 
the Amazon is practically isothermal, with only a 
small variation throughout the year except in the 
southern part (Rondônia, Mato Grosso, Bolivian 
Amazon, and the Southern Peruvian Amazon). An-
nual averages show very high temperatures in the 
central equatorial region, exceeding 27-29ºC. The 
seasonal thermal amplitude is 1-2ºC, and average 
values range from 24°C to 26ºC. The city of Belém 
(PA) has a maximum monthly average temperature 
of 26.5ºC in November, and a minimum of 25.4ºC 
in March, while Manaus (AM) has its temperature 
extremes in September (27.9ºC) and April (25.8ºC). 
In austral winter, the cold air masses that produce 
frosts in the South and Southeast of Brazil can also 
cool the southern and western Amazon, with sig-
nificant air temperature drops (Ricarte and 
Herdies 2014, Viana and Herdies 2018). Near the 
Andes, the maximum monthly mean temperature 
in Santa Cruz de la Sierra, Bolivia, reaches 26.1°C 
in September and 20°C in June. Despite small sea-
sonal fluctuations, large temperature oscillations 
(high amplitude) are typical of the diurnal cycle in 
this region, in association with the timing of local 
rainfall.  

Studies  Period P R ET 
C EF Imbalance 

(R/P) (ET/P) P-E-R 

Costa and Foley (1999)* 1976-1996 2160 1106 1679 0.51 0.78 -625 

Zeng (1999) 1985-1993 2044 1095 1879 0.54 0.92 -930 

Salazar (2004) 1961-1990 2189 940 1248 0.43 0.57 1 

Marengo (2004)* 1970-1999 2117 1059 1570 0.5 0.74 -512 

Getirana et al. (2014) 1989-2008 2208 1188 1033 0.54 0.47 -13 

Carmona (2015) 1982-2008 2266 1163 1189 0.51 0.52 -86 

Builes-Jaramillo and Poveda (2018) 1984-2007 2225 965 1248 0.43 0.56 12 

Table 5.1. Long-term water balance of the Amazon river basin according to several studies. Studies marked by an asterisk (*) in-
clude the Tocantins river basin. Precipitation (P), evapotranspiration (ET), runoff (R), and the imbalance (P – ET – R) are ex-
pressed in mm/yr. The runoff coefficient (C = R/P) and evaporative fraction (EF=ET/P) are dimensionless variables. 
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5.2.1.2 Atmospheric circulation The mean atmos-
pheric circulation in the Amazon is forced by the 
annual cycle of solar radiation. The atmospheric 
circulation's main features are described here, 
while the solar forcing is described in Section 5.3.2.  
Near the Amazon delta, maximum rainfall is ob-
served during austral summer-fall, and dry condi-
tions prevail during wintertime (Figure 5.1). This is 
due to the alternating warming of the two hemi-
spheres and to the annual cycle associated with the 
seasonal meridional migration of the Intertropical 
Convergence Zone (ITCZ) (Vera et al. 2006a). The 
trade winds coming from the tropical North and 
South Atlantic converge along the ITCZ and are as-

sociated with subtropical anticyclones in the North 
and South Atlantic.  
 
Monsoonal rain over the Amazon Basin during aus-
tral summer provides moisture to establish an ac-
tive South Atlantic Convergence Zone (SACZ; Fig-
ure 5.1). The SACZ is characterized by a convective 
band that extends northwest-southeast from the 
Amazon Basin to the subtropical South Atlantic 
Ocean. It is identifiable by persistent cloudiness 
and frequently configured in the austral summer-
time (Ambrizzi and Ferraz 2015). The SACZ´s nor-
thern edge merges with the Atlantic ITCZ (Cai et al. 
2020). Diabatic heating in the Amazon Basin con- 

Figure 5.1 Schematic of the main climatological features in South America. The blue and red lines represent June-July-August (JJA) 
and December-January-February (DJF), respectively. The annual cycle of rainfall (bars) is shown for stations located in various sec-
tions of the Amazon region (in mm), indicated by dots. Low-level circulation features: CL, Chaco Low; BH, Bolivian High; ITCZ, Inter-
tropical Convergence Zone; MCS, mesoscale convective system; SACZ, South Atlantic Convergence Zone; SALLJ, South American 
low- level jet. Sources of rainfall data: INMET and ANA (Brazil), SENAMHI (Peru), SENAMHI (Bolivia) and INAMHI (Ecuador). The 
figure is adapted from Figure 1 of Cai et al. (2020). Climatology is for the period 1961-2010. 
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tributes to the formation of the Bolivian High (BH) 
in the upper atmosphere (Lenters and Cook 1997). 
At the regional scale, moisture transport in and out 
of the Amazon Basin is critical for the rainfall re-
gime, particularly during the wet season. The 
moisture from the Amazon is exported out of the 
region, transported via the South American Low-
Level Jet (SALLJ) east of the Andes, interacting with 
the Chaco Low (CL) and contributing to precipita-
tion over the La Plata Basin by intensifying 
mesoscale convective systems (Marengo et al. 
2004, Drumond et al. 2008, 2014; Arraut et al. 2012; 
Vera et al. 2006b, Liebmann and Mechoso 2011, 
Jones and Carvalho 2018, Gimeno et al. 2016, 2020, 
Jones 2019, Cai et al. 2020).  
 
5.2.1.3 Rainfall Because it extends into both hemi-
spheres, the Amazon is characterized by several 
rainfall regimes due to the alternating warming of 
each hemisphere. During a ‘normal’ year, rainfall 
in the region shows opposing phases between the 
northern and southern tropics, with a rainy season 
in austral winter in the north and austral summer 
in the south. In the southern Amazon, rainfall 
peaks during austral summer; in the central Ama-
zon and near the Amazon delta, it peaks in austral 
autumn; and north of the Equator, it peaks in aus-
tral winter (Figure 5.1). The northwest equatorial 
region experiences low rainfall seasonality, with 
wet conditions throughout the year. For more de-
tails about rainfall regimes in the Amazon Basin, 
see Figueroa and Nobre (1990), Rao and Hada 
(1990), Rao et al. (2016), Espinoza et al. (2009a, 
2015), Debortoli et al. (2015), Marengo and Espi-
noza (2016), and Cai et al. (2020).  
 
The onset and demise of the rainy season in the 
Amazon varies gradually from south to north. The 
end of the rainy season is more regular than its on-
set. The rainy season in the southern Amazon ends 
in April, while in the north it ends in September. 
SST anomalies in the Pacific or Tropical Atlantic 
play a dynamic role in controlling the beginning 
and end of the rainy season (Liebmann and Ma-
rengo 2001, Liebmann et al. 2007; Arias et al. 2015).  

5.2.2 The role of ENSO and other large-scale 
mechanisms 
 
5.2.1.1 ENSO The El Niño-Southern Oscillation 
(ENSO) is the main cause of global interannual var-
iability in the water and energy budgets. ENSO ex-
tremes represent a reversal of the typical SST pat-
terns in the Tropical Pacific – El Niño (EN)/La Niña 
(LN), when there is warming/cooling in the eastern 
or central-eastern tropical Pacific. EN is typically 
(but not exclusively) accompanied by drought in 
the Amazon region. In general, recent severe 
droughts over the Amazon have resulted in low 
river water levels, a high risk of forest fires, and im-
pacts on natural river ecosystems (Cai et al. 2020).  
 
Changes to atmospheric circulation during EN and 
drought have been summarized by Builes-Jara-
millo et al. (2018a) and Jiménez-Muñoz et al. (2019). 
Observed anomalies in the vertical distribution of 
zonal and meridional wind are consistent with SST 
anomalies. During drought and EN years, subsid-
ence anomalies appear over areas with negative 
rainfall differences over the Amazon, with convec-
tion and intense rainfall over warm SST in the east-
ern Equatorial Pacific region. The upper-level con-
vergence anomalies observed during drought 
years over tropical equatorial South America (east 
of the Andes) are consistent with low-level subsid-
ence anomalies. This suggests anomalies in the up-
per and lower branches of the Hadley circulation 
over tropical South America east of the Andes, and 
of the Walker circulation over the equatorial Atlan-
tic. The ascending branch of the Walker circulation 
over the eastern central Pacific is the main driver 
of the subsidence branch over the Amazon Basin 
east of the Andes, which extends all the way to the 
tropical Atlantic.  
 
There are different “types” of EN depending on the 
location of maximum warm anomalies over the 
tropical Pacific, Eastern Pacific (EP) EN or Central 
Pacific (CP) EN (Takahashi et al. 2011). Because the 
Hadley and Walker circulations are affected differ-
ently during EP-EN and CP-EN episodes (Zhelez-
nova and Gushchina 2017), they lead to different 
precipitation anomalies over South America 
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(Tedeschi and Collins 2017; Sulca et al. 2018). Phys-
ical mechanisms behind the different patterns of 
rainfall deficits during CP- and EP-ENs and warm 
Tropical Northern Atlantic Index (TNA) events are 
described in Jiménez-Muñoz et al. (2019). EP-EN 
years were detected in 1983 and 1998, whereas CP-
EN occurred in 2010 and 2016 (Sulca et al. 2018; Gu 
and Adler 2019, Gloor et al. 2013, 2018). 
 
5.2.2.2 PDO, AMO, MJO In addition to ENSO, there are 
two other modes of interannual and interdecadal 
variability with teleconnections that influence the 
climate of the Amazon, The Pacific Decadal Oscil-
lation (PDO) and the Atlantic Multidecadal Oscilla-
tion (AMO). They represent changes in the organi-
zation of air-sea interactions that vary at decadal 
scales and affect the sea surface, inducing later cir-
culation and rainfall changes in the Amazon. For a 
detailed definition of these modes of variability, 
please see the Glossary. 
 
Consistent with the ENSO (EN) positive phase, the 
PDO and AMO's positive phases matched the inten-
sification of negative rainfall anomalies in the Am-
azon towards the end of 2015, during the 2015-16 
EN event (Aragão et al. 2018). This finding is con-
sistent with previous work (Kayano and Ca-
pistrano, 2014) showing that the Atlantic Multide-
cadal Oscillation (AMO) and ENSO influence South 
American rainfall at the end of the year, before the 
peak of EN.  
 
Positive phases of the PDO are associated with an 
increase in precipitation in the central and north-
ern parts of the basin and a decrease in the south-
ern regions (Gloor et al. 2013). Andreoli and Kayano 
(2005) show that EN effects on rainfall over South 
America differ from those of the PDO phases in the 
Amazon. For example, they show negative precipi-
tation anomalies for the warm PDO regime, con-
sistent with the descending motion and cyclonic 
circulation over northern South America and the 
adjacent Atlantic sector. On the other hand, the rel- 
atively weaker circulation patterns in these sectors 
result in smaller magnitude precipitation anoma-
lies in the Amazon for the cold PDO phase.  
 

The intraseasonal variability is particularly im-
portant during the austral winter (Mayta et al. 
2018). Previously, Souza and Ambrizzi (2006) 
found that the Madden–Julian Oscillation (MJO) is 
the main atmospheric mechanism influencing 
rainfall variability at intraseasonal timescales over 
the eastern Amazon and during the rainy season in 
northeast Brazil. During the drought of 2005, how-
ever, the intraseasonal oscillation was weaker than 
normal, favoring drought conditions in the region. 
The Tropical North Atlantic played a major role in 
this drought (Builes-Jaramillo et al., 2018b). 
 
5.2.3. Extreme drought and flood events 
 
In the last 15 years, the Amazon Basin has wit-
nessed climate extremes, some of them character-
ized as ‘events of the century’; droughts in 2005, 
2010, and 2015–16; and floods in 2009, 2012, 2014, 
and 2021. Historical records show previous 
droughts in 1926, 1964, 1980, 1983, and 1998; and 
floods in 1953, 1988, 1989, and 1999. These events 
have been linked to modes of natural climate vari-
ability (EN, warm TNA anomalies) with strong im-
pacts on natural and human systems. Some of the 
Amazon's main cities were flooded during flood 
years or isolated by extremely low river levels dur-
ing droughts. The number of fires increased during 
drought years, releasing carbon, smoke, and soot 
into the atmosphere and affecting the local popula-
tion (Marengo and Espinoza 2016, Gatti et al. 2014, 
Aragão et al. 2018, Jiménez-Muñoz et al. 2016, 
2019). The year 1999 and other wet years (1988-89, 
2007-2008, and 2011-2012) were LN years (see 
Chapter 22). It is worth mentioning that droughts 
and floods are not synchronous and do not affect 
the whole basin in the same way, as seen in Figures 
5.2 and 5.3. 
 
Overall, droughts affect the north-central Amazon, 
but the spatial pattern differs from one EN event to 
another and even from one drought case to another 
(Figure 5.2). Droughts in the Amazon have been re-
lated to EN events, such as in 1912, 1926, 1983, 
1997–1998, and 2015-16 (e.g., Aceituno 1988; Wil-
liams et al. 2005, Coelho et al. 2013, Marengo et al. 
2018, Jiménez-Muñoz et al. 2018, 2019). However, 
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the 1964 and 2005 severe droughts were excep-
tions, indicating TNA's active influence on those 
extremes (Marengo et al. 2008, Zeng et al., 2008, 
Builes-Jaramillo et al., 2018b). The 2010 extreme 
drought was related to the successive occurrences 
of an El Niño in austral summer and a very warm 
TNA in the boreal spring and summer (Espinoza et 
al. 2011; Marengo et al. 2011, Lewis et al. 2011, Gatti 
et al. 2014, Andreoli et al. 2012). Figures 5.2 and 5.3 
show seasonal rainfall anomalies in South America 
for drought and wet years, respectively. In each 
case, whether EN or not, the geographical distribu-
tion of droughts may differ, affecting the south-
eastern, central, or northern Amazon differen-
tially, and thus impacting the region's hydrology.  
 
5.2.4 Andean-Amazon hydrometeorology and 
variability  
 
This section focuses on the western Amazon, in-
cluding the Andean part of the Amazon Basin. The 
region encompasses the upper Madeira Basin in 
Bolivia, Peru, and Brazil; the Amazonas-Solimões 
Basin in Peru and Ecuador; and the Japurá-Ca- 
quetá Basin in Colombia and Brazil. This region 
presents a wide variety of mountain climates, in-
cluding humid conditions in the cloud forests, Pár-
amos, and Yungas, and dry conditions in the high-
land Punas. 
 
5.2.4.1 Seasonal patterns Seasonal rainfall cycles in 
the upper part of the Andean-Amazon Basins of Co-
lombia and Ecuador follow a unimodal regime with 
a wet season during the boreal summer (Laraque et 
al. 2007; Arias et al. 2020). In these basins, river dis-
charge peaks around May-July (e.g., Napo and Ca-
quetá rivers in Figure 5.7), a pattern associated 
with the intensification of westward moisture ad-
vection from the equatorial Amazon Basin and or-
ographic uplift forced by the Andean topography 
during boreal summer (Rollenbeck and Bendix 
2011; Campozano et al. 2016). 
 
The Andean-Amazon Basins of Ecuador exhibit a 
bimodal annual cycle of precipitation, with peak 
discharge observed around March-April and Octo-

ber-November in the upper part of the Napo, Pas-
taza, and Santiago Basins (Campozano et al. 2018) 
(e.g., Reventador station in Figure 5.1). Conse-
quently, the lowlands of these intra-Andean Basins 
follow a bimodal annual cycle of discharge with 
peaks around June-July and October-November 
(Laraque et al. 2007). In these regions, less rainfall 
during boreal summer is associated with atmos-
pheric subsidence that inhibits convective activity 
(Campozano et al. 2016; Segura et al. 2019).  
 
In the southern tropical Andean-Amazon Basins 
(mainly south of 8°S), the dry season occurs in 
June-August and the rainy season in December-
March, linked to the mature phase of the South 
American Monsoon System (SAMS) and the merid-
ional movement of the ITCZ. River discharges over 
these basins show unimodal cycles peaking 
around January and March (e.g., Beni, Ucayali and 
Huallaga rivers in Figure 5.7; and Santa Cruz and 
San Gabán stations in Figure 5.1) (Espinoza et al. 
2011; Lavado-Casimiro et al. 2012; Molina-Carpio et 
al. 2017). Rainfall seasonality is particularly strong 
in the upper and drier part of the Andean-Amazon 
Basins (usually above 3,000 m), where around 75% 
of total annual rainfall is observed between No-
vember and March (~100 mm/month), driven by 
upward moisture transport from the Amazon to-
ward the mountains (Garreaud et al. 2009). Easterly 
winds in the upper troposphere (200-300 hPa) also 
favor moisture fluxes from the Amazon to the An-
des at different time scales (Garreaud et al. 2009; 
Segura et al. 2020). 
 
Most of the Amazon’s Andean tributaries drain to 
two main rivers, the upper Madeira river (mainly 
from the Bolivian and southern Peruvian Amazon) 
and the Amazonas-Solimões river (mostly from the 
Peruvian and Ecuadorian Amazon) (Figure 5.7). At 
the Porto Velho station, the basin of the upper Ma-
deira river spans 975,500 km2, of which 23% are in 
the Andes. Mean annual discharge at Porto Velho is 
estimated at 18,300 m3/s, with peak values around 
36,000 m3/s from March-April and lows around 
5,000 m3/s from September-October (Molina-Car-
pio et al. 2017) (Figure 5.7). At the Tabatinga sta- 
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Figure 5.2 Spatial patterns of precipitation anomalies during seasons DJF, MAM, JJA, and SON for drought years in the Amazon. 
These are for different strong EN and TNA warming. Precipitation anomalies were obtained from the CHIRPSv2.0 dataset using 
the reference period 1981-2010. A black contour marks the Amazon Basin. Adapted from Jiménez-Muñoz et al. (2021; ©RMetS). 
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tion, the Amazonas-Solimões river Basin spans 
890,300 km2, of which ~40% are in the Andes. The 
mean annual discharge at Tabatinga is estimated 
at 38,000 m3/s, with peak values around 51,000 
m3/s from April-May and lows around 20,000 m3/s 
in September (Lavado-Casimiro et al. 2012) (Figure 
5.7).  
 
5.2.4.2 Interannual variability and extremes In the An-
dean-Amazon region, a rainfall deficit (excess) 
during austral summer is frequently associated 
with El Niño (La Niña) events (Poveda et al. 2006; 
Espinoza et al. 2011). However, different patterns 
occur in the upper and lower parts of the Andean-

Amazon Basins (Arango-Rueda and Poveda 2019). 
Recent studies have also reported different precip-
itation anomalies for the Central-Pacific and East-
ern-Pacific El Niño types (Lavado-Casimiro and Es-
pinoza 2014; Sulca et al. 2018; Navarro-Monterroza 
2019). In general, the Central-Pacific El Niño (La 
Niña) is associated with rainfall deficits (excesses) 
in the upper part of the basin (the Andean regions 
of Colombia, Ecuador, and Peru). These anomalies 
are weaker during Eastern-Pacific El Niño (La 
Niña) events. In contrast, in the upper Madeira Ba-
sin rainfall anomalies are stronger during the East-
ern-Pacific El Niño.  
 

Figure 5.3. Same as in Figure 5.2 but for wet episodes (2019; ©RMetS).  
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On seasonal timescales, rainfall anomalies over the 
Andean Amazon Basin range from ±0.5 to ±2.0 
mm/day and can persist over periods of several 
months (Sulca et al., 2018; Jiménez-Muñoz et al., 
2021). During the austral autumn, winter, and 
spring, rainfall anomalies over the Andean-Ama-
zon region are mainly related to SST variability in 
the TNA, which is the main source of atmospheric 
moisture for the Andean-Amazon region (Arias et 
al. 2015; Hoyos et al. 2017; Poveda et al. 2020). 
Warm TNA anomalies are associated with in-
creased precipitation in Colombia and Venezuela, 
related to enhanced atmospheric water vapor 
transport from the tropical Atlantic and the Carib-
bean Sea toward northern South America (e.g., 
Arias et al. 2020). In the Andean-Amazon regions of 
Ecuador, Peru, and Bolivia, warm conditions in the 
TNA are related to rainfall deficits, associated with 
a reduction in moisture advection from the Atlan-
tic Ocean and enhanced atmospheric subsidence 
over the central and southern Amazon (Silva et al. 
2008, Espinoza et al. 2019a; Jiménez-Muñoz et al. 
2021).  
 
As a result of rainfall anomalies, extreme hydrolog-
ical events in the Andean-Amazon Basins have 
been associated either with El Niño/La Niña events 
or with SST anomalies in the TNA. The very unu-
sual wet austral summer period of 2014, originat-
ing on the eastern slopes of the Peruvian and Boliv-
ian Andes, was associated with warm anomalies in 
the western Pacific-Indian Ocean and over the sub-
tropical South Atlantic Ocean (Espinoza et al. 2014). 
Wet conditions in the Bolivian Amazon during the 
2014 austral summer were superimposed on flood 
waves from the main sub-basins, producing major 
floods in the region that same year (Ovando et al. 
2016). This was also related to long-term atmos-
pheric blocking systems during January and Feb-
ruary of 2014 over southeastern Brazil, which ulti-
mately caused the drought over São Paulo during 
the austral summer of 2014. In the higher part of 
the Amazon Basins' inter-Andean rivers, floods are 
frequently triggered by intense storms and/or 
rapid glacier melting during the austral spring-
summer (Huggel et al. 2015). 
 

5.3 The Amazon convection and mesoscale cir-
culations 
 
5.3.1 Nature of the Amazon convection 
 
Atmospheric deep convection is typical in the trop-
ics in association with the ascending branch of the 
Hadley-Walker cells. Upward motion extends from 
near the surface to above the 500 hPa level, reach-
ing the level of free convection (LFC) where buoy-
ant convection begins. At the large-scale (>1,000 
km), seasonal changes in the thermal contrast be-
tween tropical South America and the Atlantic 
Ocean modulate wind circulation, which supplies 
the available energy and moist instability over the 
Amazon Basin (Vera et al. 2006a). These features 
provide the convective available potential energy 
(CAPE), gross moist instability, and rising motion 
essential to produce deep atmospheric convection 
(Garstang et al. 1994; Cohen et al. 1995; Zhou and 
Lau 1998). At regional (100-1,000 km) to local 
scales (<100 km), Amazon convection is also re-
lated to the land surface wet-bulb temperature, 
generally above 22°C (Eltahir and Pal 1996), which 
is closely determined by surface humidity and sen-
sible and latent heat fluxes from the local land sur-
face (Fu et al. 1999). 
  
Deep atmospheric convection contributes about 
80% of the total annual precipitation in the Ama-
zon Basin, while only 20% of yearly rainfall is asso-
ciated with local systems (Greco et al. 1990). Sea-
sonal changes in convection are related to changes 
in the moistening of the planetary boundary layer 
(PBL) and changes in the temperature at the top of 
the PBL (Fu et al. 1999; Liebmann and Marengo 
2001). However, in the northwestern Amazon, deep 
convection is particularly intense year-round be-
cause the warmer land surface provides a highly 
unstable atmospheric profile. In addition, the con-
cave shape of the Andes induces a low-level con-
vergence over the northwestern Amazon Basin, 
which is related to high annual rainfall (>3,000 
mm) in this region (Figueroa and Nobre 1990; Es-
pinoza et al. 2009b). Because deep convection over 
the Amazon is related to a strong release of latent 
heat, the Amazon basin is an important source of 
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energy. Through the equatorial Kelvin and Rossby 
waves and their interactions with the orography, 
the Amazon modulates the main regional struc-
tures of the atmospheric circulation in South 
America (Silva Dias et al. 1983; Figueroa et al. 1995; 
Junquas et al. 2015). 
 
5.3.2 Solar forcing  
 
Following the seasonal migration of the solar radi-
ation maximum, the major heating zone migrates 
from northernmost South America (including the 
northern Amazon Basin) in austral winter to the 
central and southern Amazon in austral summer 
(Horel et al. 1989). Consequently, convective activ-
ity and rainfall enhancement show a seasonal dis-
placement following the heating zone migration 
(see Section 5.2.1). Figure 5.4 shows the spatial and 
temporal evolution of the outgoing longwave radi-
ation (OLR) in tropical South America, closely re-
lated to solar forcing and the development of deep 
convection.  
 
The alternating warming of the two hemispheres 
modulates the seasonal displacement of the ITCZ, 

including its Amazonian part (Figure 5.1) and the 
ascendant branch of the Hadley-Walker cells, 
which is associated with maximum rainfall over 
the equatorial Amazon Basin. Over this region, so-
lar radiation peaks at the equinoxes (Figure 5.4), 
and the northeastern Amazon Basin displays the 
maximum precipitation in the austral autumn, 
with peaks in April and May. However, in some 
western equatorial Amazon regions, the wet sea-
son occurs during austral fall and spring (see Sec-
tion 5.2.1). In austral spring, surface heating by so-
lar radiation is highest over the central and south-
ern Amazon (south of 5°S), where deep convection 
appears. By late November, deep convection hap-
pens over most of the Amazon Basin, mainly from 
5°S to 20°S, but it is still absent over the eastern 
Amazon Basin and northeast Brazil (Horel et al. 
1989; Zhou and Lau 1998).  
 
At the peak of austral summer, following the south-
ward migration of the sun, heating and convective 
activity moves toward the subtropical highlands. 
Rainfall peaks over the central Andes and the 
southern Amazon Basin during this season. The 
thermal contrast between the continent determin-

Figure 5.4 (A) 1974-2019 mean annual values of outgoing longwave radiation (OLR, in W.m-2) over tropical South America. (B) 
Time-latitude diagram of the climatology of monthly OLR (1974-2019) averaged across a 10° longitudinal strip centered on the 
black line over tropical South America shown in (a). Adapted from Horel et al. (1989). Interpolated OLR data provided by the 
NOAA/OAR/ESRL PSL (HTTPS://PSL.NOAA.GOV; Liebman and Smith 1996). 
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es the SAMS configuration (Marengo et al. 2012). 
The mature phase of the SAMS (typically from late 
November to late February) exhibits four dominant 
features (Section 5.2.1 and Figure 5.1): (i) an anti-
cyclone located over Bolivia at 200–300 hPa (the 
Bolivian High -BH); (ii) the occurrence of high sur-
face temperatures over the Atlantic Ocean before 
the wet season begins in the southern Amazon; (iii) 
a northwest-southeast oriented band of maximum 
cloudiness over the southeast of the continent, the 
SACZ; and (iv) the intensification of the SALLJ to 
the east of the Andes (see review in Espinoza et al. 
2020).  
 
5.3.3 Forest breeze and river breeze circulations 
 
Forest and river breezes are mesoscale (10-100  

km) circulations close to large rivers. They result 
from differences in the sensible and latent heat 
fluxes between the hot land and the cool water dur-
ing the daytime, which produces a horizontal pres-
sure contrast. This mechanism enhances cloudi-
ness over land during the day, while clear skies 
predominate over water. The opposite occurs dur- 
ing the night. In the Amazon Basin, convergence 
zones lead to enhanced rainfall over forests away 
from large rivers, and convective activity is re-
duced near rivers (e.g., Paiva et al. 2011; Figure 5.5).  
 
Several studies have described river breezes in the 
central Amazon, using both observed and model-
ing approaches (e.g., Ribeiro and Adis 1984; 
Garstang and Fitzjarrald 1999; Cutrim et al. 2000). 
Near the Amazon‐Tapajós confluence (Figure 5.5), 

Figure 5.5 Rainfall estimated by TRMM 3B42 between (A) 15 to 06 UTC; and (B) 06 and 15 UTC. Adapted from Paiva et al. (2011). 
(c) Image of the VIIRS sensor (Visible/Infrared Imager Radiometer Suite) in true color corresponding to July 14 2020 at 16:48 UTC 
over the confluence of the Tapajós and Amazon rivers (dotted black box in a and b). By the NOAA/OAR/ESRL PSL 
(HTTPS://PSL.NOAA.GOV; Liebman and Smith 1996). 
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rain gauges close to large rivers show less convec-
tive rainfall in the afternoon. Still, this deficit is 
more than compensated by additional nocturnal 
rainfall (Fitzjarrald et al. 2008). Near Manaus, dos-
Santos et al. (2014) show that river breezes and 
their impact on moisture transport are more evi-
dent during the dry season. The authors show that 
winds away from the rivers are frequent in the 
morning and afternoon, transporting moist air 
from the rivers to the city of Manaus. In contrast, 
winds blowing towards rivers are mainly observed 
at night.  
 
River breezes affect moisture transport (Silva Dias 
et al. 2004) and local rainfall patterns. Paiva et al. 
(2011) showed a marked reduction in rainfall over 
the Solimões-Amazon river and along most Ama-
zon tributaries. Since meteorological stations are 
often sited near large rivers (where most Amazon 
cities are situated), rain gauge‐derived estimates of 
Amazon rainfall may be biased by river breezes 
(Silva Dias et al. 2004; Paiva et al. 2011). 
 
5.3.4 Sea breeze and coastal circulations 
 
The sea breeze system occurs at coastal locations 
due to the propagation of cool marine air towards 
inland areas. This system is initiated when the land 
surface heats faster than the sea surface (generally 
under relatively clear sky conditions). The thermal 
contrast creates a pressure gradient force directed 
from sea to land, causing a shallow layer of marine 
air to move inland (Miller et al. 2003). 
 
Over the easternmost Amazon Basin, the presence 
of numerous bays, rivers, lakes, and the Atlantic 
Ocean create the ideal environment for the for-
mation of local circulations, which modulate the 
regional weather and climate (Souza Filho 2005, 
Planchon et al. 2006; Germano and Oyama 2020). 
The main circulation patterns of the coastal and 
bay breezes over this region have been described 
elsewhere, based on observational and modeling 
studies (e.g., Silva Dias et al. 2004; Germano et al. 
2017; Wanzeler 2018). In Belém (in the eastern Am-
azon Basin), the bay breeze starts in the morning 
and early afternoon. It is characterized by signifi- 

cant changes in wind direction from south to north 
(Matos and Cohen 2016) and is associated with the 
presence of stationary cloudiness. Rainfall peaks 
during the April-May season coincide with the sea 
breeze's maximum activity, which interacts with 
the Atlantic Ocean's trade winds to produce storm 
systems known as squall lines (Kousky 1980; Silva 
Dias 1987; Cohen et al. 1995).  
 
Squall lines are multicellular storms that propa-
gate inland in the Amazon Basin for over 1000 km 
at speeds of 50–60 km h-1 (Garstang et al. 1994; 
Greco et al. 1994). At the mesoscale, squall lines are 
characterized by advection of moisture produced 
by a sea breeze, a strong and deep low-level east-
erly jet, and a heat source in the central and west-
ern Amazon (Cohen et al. 1995). Strong jets tend to 
propagate the squall lines at higher speeds, with a 
longer lifetime and increased cloud development, 
forming thunderstorms with strong updrafts and 
downdrafts, as well as lightning. Downdrafts and 
lightning, in turn, cause disturbances that affect 
ecosystem dynamics, as described in Section 3.6.  
 
5.3.5 Orographic-induced circulations and spa-
tial rainfall distribution in the Andean-Amazon 
region 
 
The Andean-Amazon hydrometeorology is charac-
terized by interactions between regional atmos-
pheric circulation, lowland-highland temperature 
contrast, and the complex Andean topography 
(e.g., Houze 2012; Roe 2005; Barry 2008). In addi-
tion, regional atmospheric circulation over South 
America is directly influenced by the Andean orog-
raphy, particularly at low-levels (Figueroa et al. 
1995). In the Andean-Amazon region, the SALLJ 
and the Llanos Jet (or Corriente de los Andes Orien-
tales, CAO) are strongly controlled by the presence 
of the Andes, which acts like a barrier to the west, 
and the Amazon Basin to the east (e.g., Marengo et 
al. 2004; Jiménez-Sánchez et al. 2019). These LLJs 
are key elements of the South American atmos-
pheric circulation because they transport vast 
quantities of moisture along large meridional dis-
tances throughout the east of the Andes. Indeed, 
the CAO's easterly flow reaches the eastern pied- 
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mont of the Andes as the northernmost leg of the 
SALLJ (Espinoza et al. 2020; Poveda et al. 2020).  
 
At the local scale, Andean orography can influence 
atmospheric circulation through mechanical and 
thermal processes. The diurnal cycle of insolation 
generates thermally driven winds, such as ana-
batic (warm upslope) and katabatic (cold 
downslope) winds due to radiative warming of the 
surface during the day and radiative cooling during 
the late afternoon and night, respectively (e.g., 
Wallace and Hobbs 2006; Junquas et al. 2018). In 
addition, katabatic winds from the Andean high-
lands could trigger mesoscale convective systems 
(MCS) over the Andean-Amazon transition region 
(Trachte et al. 2010a,b; Kumar et al. 2020). Over this 
region, large and medium MCS are generally re-
lated to wet episodes, enhanced by the orographic 
lifting of moisture advection from the SALLJ (e.g., 
Giovannettone and Barros 2009; Romatschke and 
Houze 2013). Consequently, the mountainous pre-
cipitation diurnal cycle is associated with complex 
characteristics related to local atmospheric circu-
lations (Poveda et al., 2005; Junquas et al., 2018). 
For example, on the eastern slopes of the tropical 
Andes, the highest precipitation rates are observed 
at night due to downslope wind and moisture 
transport (Figures 5.5a and b). Observational and 
modeling studies have shown that inter-Andean 
valleys also generate mechanical channelization of 
the moisture flux, which could contribute to mois-
ture and rainfall over the tropical Andes, where 
glaciers, agriculture, and food security depend on 
precipitation. This includes regions such as La Paz, 
Cuzco, and the Mantaro valleys (Egger et al. 2005; 
Junquas et al. 2018; Saavedra et al. 2020). Convec-
tive activity forced by the Andes also generates 
sudden reversals of the river stage in the western 
Amazon (e.g., near Iquitos, Peru), where riparian 
agriculture is closely related to the annual hydro-
logical cycle (Figueroa et al., 2020). 
 
Interactions between large-scale atmospheric cir-
culation and the orographic circulations described 
above contribute to the high spatial variability of 
precipitation over the Andes-Amazon region. Stud-
ies have described a complex relationship between 

altitude and rainfall, which produces a strong spa-
tial rainfall gradient associated with the windward 
or leeward exposure of the rain station to the dom-
inant moist wind (Bookhagen and Strecker 2008; 
Espinoza et al. 2009b, Rollenbeck and Bendix 
2011). The highest rainfall rates in the Amazon Ba-
sin (6,000–7,000 mm/year) are generally observed 
at about 400–2,000 m in the Amazon Basin of Co-
lombia, Ecuador, Peru, and Bolivia (Poveda et al. 
2014; Espinoza et al. 2015; Chavez and Takahashi 
2017) (e.g., San Gabán station in Figure 5.1). As a 
result of these rainfall characteristics, the Andean 
Basins show the highest runoff per unit area of the 
Amazon River Basin (Moquet et al. 2011; Builes-
Jaramillo and Poveda 2018), and Andean rivers 
drain sediments, pollutants, and nutrients down-
stream to the Amazon lowlands (McClain and 
Naiman 2008; Vauchel et al. 2017). In turn, the Am-
azon lowlands export water vapor and nutrients to 
the Andes through the moisture-laden trade winds, 
which is part of a strong interaction between the 
Amazon-Andes hydroclimatic system (e.g. Staal et 
al., 2018; Weng et al., 2018, Espinoza et al., 2020). 
 
5.3.6 The role of extreme weather events on eco-
system dynamics 
 
At least two types of extreme weather events affect 
ecosystem dynamics and the natural carbon cycle. 
First, severe storms associated with squall lines 
can propagate strong downdrafts (Fujita 1990, 
1981, Garstang et al. 1998) that cause forest blow-
downs (Nelson 1994, Garstang et al. 1998, Negrón-
Juárez et al. 2010, Espírito-Santo et al. 2010), affect-
ing forest structure and species composition 
(Marra et al. 2014, Rifai et al. 2016, Magnabosco 
Marra et al. 2018, Chambers et al. 2009). Second, 
lightning is a frequent disturbance mechanism 
that can propagate fire and kill trees directly (Gora 
et al. 2020, Yanoviak et al. 2020, McDowell et al. 
2018, Foster, Knight, and Franklin 1998). The fre-
quency of lightning is positively associated with 
the density of large trees and biomass stocks in 
tropical forests (Gora et al. 2020). In the Amazon, 
this is important in the southern and eastern tran-
sition zones between forests and savannas, but 
also in Roraima state (Gora et al. 2020). 
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5.3.6.1 Severe storms, blowdowns, and impacts on forest 
ecosystem dynamics Wind is a major cause of disturb-
ance in forests worldwide, with impacts ranging 
from minor loss of leaves to widespread tree-mor-
tality (Mitchell 2013). In the Amazon, convective 
storms can generate strong downdraft winds and 
extreme rainfall (e.g., 26-41 m s-1 and 30 mm h-1, 
respectively) (Garstang et al. 1998; Fujita et al. 1990; 
Negrón-Juárez et al. 2010) that can fell forest 
patches ranging in size from <2 ha (Negrón-Juárez 
et al. 2011) to >3,000 ha (Nelson et al. 1994). Large 
blowdowns can be associated with squall lines 
(Negrón-Juárez et al. 2010; Araujo et al. 2017). For-
est blowdowns can be detected with remote sens-
ing imagery because they create a large contrast in 
geometric and reflectance patterns between im-
ages acquired before and after the event (Figure 
5.6A). 
 
Blowdowns occur across the Amazon Basin, with 
the highest frequency in the Northwest region 
(Nelson et al. 1994; Negrón-Juárez et al. 2018; Es-
pírito-Santo et al. 2010). In the Central Amazon 
near Manaus, blowdowns mostly occur during the 
transition from the dry to rainy season (Negrón-
Juárez et al. 2017). The size distribution of blow-
downs follows a power-law (Negrón-Juárez et al. 

2018; Chambers et al. 2009), resulting in a mosaic 
of forest patches at different successional stages 
(Chambers et al. 2013). Because of their greater fre-
quency, relatively small-sized patches dominate 
the landscape.  
 
Tree damage and mortality occur when wind and 
rain loads exceed the mechanical stability of trees, 
leading to snapping and uprooting (Ribeiro et al. 
2016; Peterson et al. 2019). In the Amazon, winds, 
and rain interact with different forest types that 
may harbor more than 280 tree species in a single 
hectare (de-Oliveira et al. 1999). In these heteroge-
neous forests, storm mortality can be controlled by 
biotic and abiotic factors (e.g., within species and 
across topography), with severely damaged areas 
experiencing up to 90% tree mortality (Mag-
nabosco Marra et al. 2014; Rifai et al. 2016) (Figure 
5.6B). The forest can lose its typical closed-canopy 
structure and accumulate large amounts of wood 
debris on the forest floor (Figure 5.6C). This gradi-
ent of gap sizes and resource/niche availability has 
relevant consequences for regional patterns of for-
est dynamics, biodiversity, and biogeochemical cy-
cles. 
 

Figure 5.6 Forest blowdown (total area of ca. 91 ha) in 2011 in the Central Amazon, Brazil. Blowdowns can be identified on satellite 
imagery by geometric and spectral features such as defuse shape and high short-wave infrared reflectance, indicating non-photo-
synthetic vegetation (NPV) resulting from widespread tree damage and mortality (A). The severity of the associated tree-mortality 
can be estimated using normalized ΔNPV (year of the blowdown – previous year) combined with field-measured tree mortality (B). 
Edge of the blowdown/old-growth forest less than six months after disturbance, with toppled, survivor, and resprouting trees (C). By 
the NOAA/OAR/ESRL PSL (HTTPS://PSL.NOAA.GOV/; Liebman and Smith 1996). 
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Tree mortality can be selective and depends on 
species traits and individual characteristics (Ri-
beiro et al. 2016; Magnabosco et al. 2014; Rifai et al. 
2016). Snapping and uprooting of large individual 
trees can topple neighbors, altering the number 
and size distribution of trees and reducing stand 
biomass. Mortality rates among surviving trees are 
higher in the first years following the event, slow-
ing biomass recovery. Resprouting and growth of 
survivor trees contribute little to biomass recovery, 
which can take decades (Magnabosco Marra et al. 
2018). Recovery trajectories differ with the severity 
of mortality. However, even low severities trigger 
secondary succession, with substantial species 
turnover and dynamics distinct from those ob-
served in small treefall gaps and human forest 
clearing (Chambers et al. 2009b; Magnabosco 
Marra et al. 2014, 2018). Soil organic carbon can 
also increase as a function of blowdown severity 
due to the decomposing organic matter available 
from wood debris (dos-Santos et al. 2016). 
 
Blowdowns can also promote tree diversity by 
providing niches to a diverse cohort of species that 
differ widely in their requirements and recruit-
ment strategies (Magnabosco et al. 2014; Chambers 
et al. 2009). Nonetheless, altered functional compo-
sition indicates that blowdowns may affect the re-
silience of biomass stocks by favoring soft‐wooded 
species with shorter life spans, which are also more 
vulnerable to future disturbances (Magnabosco 
Marra et al. 2018; Trumbore et al. 2015). The im-
pacts of blowdowns can be more pronounced in 
secondary and fragmented forests with altered 
composition and structure, and a relatively higher 
proportion of exposed edges (Silvério et al. 2019; 
Schwartz et al. 2017). That aspect is critical since 
these account for large areas of the remnant forests 
in highly deforested regions of the Amazon 
(Brando et al. 2014; Hansen et al. 2013).  
 
Research has focused on detecting blowdowns and 
quantifying their local to regional impacts on spe-
cies composition, and forest structure and dynam-
ics. However, the effects of blowdowns on forest 
functioning at the landscape scale are still poorly 
understood. Assessing the return frequency of dis- 

turbances and the recovery rates of biomass and 
functional composition in different regions is crit-
ical to understanding variations in carbon balance 
at broader spatial scales. Climate change projec-
tions indicate that the frequency and intensity of 
convective storms could increase in the Amazon 
(Negrón-Juárez et al. 2017; McDowell et al. 2018; 
IPCC Climate Change 2014). Determining the pos-
sible thresholds of disturbance severity under 
these shifting disturbance regimes is thus critical, 
since it will affect the future vulnerability and resil-
ience of the Amazon forest (Trumbore et al. 2015; 
Turner et al. 2010). The effects of forest blowdowns 
on other taxa remain unassessed in the Amazon. 
 
5.3.6.2 Lightning, natural fires, and impacts on vegeta-
tion structure and biome distribution Lightning is an 
impressive and common phenomenon in the Am-
azon due to the meteorological systems that occur 
there, such as the squall lines and the SACZ. Natu-
ral fires can happen when electrical storms de-
velop in conditions where vegetation is dry, espe-
cially when cloud-to-ground lightning is accompa-
nied by little precipitation (conventionally ≤2.5 
mm) (Viegas 2012; Nauslar et al. 2013). This phe-
nomenon, known as “dry lightning” or “dry thun-
derstorm”, also happens when the rain evaporates 
before reaching the ground, if a storm moves 
quickly, or if cloud-to-ground lightning occurs out-
side the region where precipitation occurs (Dowdy 
and Mills 2012). 
 
Natural causes have been reported as important 
for ignition in the Cerrado, mainly due to cloud-to-
ground lightning during the transition between dry 
and rainy seasons (Ramos-Neto and Pivello 2000). 
There is still no conclusive information on the pro-
portion of human versus natural causes, but natu-
ral fires are believed to be around 1-2% of total fires 
(Alvarado et al. 2018).  
 
The transition between the Amazon and Cerrado in 
Brazil has the largest area of contact between for-
est and savanna in the tropics, and these biomes 
differ fundamentally in their structural character-
istics and species composition (Torello-Raventos et 
al. 2013). In this transition, rainfall seasonality and 
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fire disturbances have an important ecological ef-
fect on the vegetation structure and composition 
due to influences on the ecological and biogeo-
chemical processes of vegetation directly affecting 
the Net Primary Production and respiration that, 
over time, lead to changes in composition and 
structure of vegetation (Alves et al. 1997). Fires 
change plants' phenology and physiology, modify 
competition among trees, and lower canopy plants 
such as grasses, shrubs, and lianas. Depending on 
its frequency and intensity, fire may increase trees' 
mortality and transform an undisturbed forest into 
a disturbed and flammable one (House et al. 2003; 
Hirota et al. 2010; Hoffmann et al. 2012). Tree spe-
cies associated with forest or savanna vegetation 
differ in numerous physiological characteristics, 
such as fire survivorship (Hoffmann et al. 2009; 
Ratnam et al. 2011) and their wood and foliar char-
acteristics (Gotsch et al. 2010). 
 
Couto-Santos et al. (2014) demonstrated the effects 
of climate variability and fire occurrence on forest-
savanna boundaries in Roraima, in the northern 
part of the Brazilian Amazon. In wet years, the for-
est advanced over the savannas, while in years with 
lower rainfall, the forest receded, and the savanna 
expanded due to the increased frequency of 
drought and fire.  
 
5.4 Evapotranspiration 
 
When rainwater reaches the rainforest's land sur-
face, most of it infiltrates into the soil, increasing 
soil moisture. About 50% of the rainfall returns to 
the atmosphere as evapotranspiration (ET: plant 
transpiration plus water evaporation from free wa-
ter surfaces and bare soil; see Table 1). The remain-
der supplies the groundwater pool, which ulti-
mately contributes to the formation of the Amazon 
Basin’s streams and rivers. This section discusses 
the seasonal patterns of ET and their controlling 
mechanisms. The role of ET as a source of water to 
the atmosphere, and consequently for the pro-
cesses of rain formation, is discussed in Chapter 7.  
 
An early attempt to characterize Amazonian ET 
was made during the Amazon Region Micromete- 

orological Experiment (ARME), a British-Brazilian 
experiment. Starting in 1983, this campaign made 
several micrometeorological measurements at the 
Ducke Reserve, about 30 km northeast of Manaus. 
Using ARME´s data and the Penman-Monteith 
equation, Shuttleworth (1988) showed a small sea-
sonality in ET, with peaks in March and September 
that coincided with net radiation (Rn) extremes. 
The study also found that actual ET rates were 
nearly equal to potential ET rates throughout the 
year, suggesting plenty of water availability even 
during dry periods.  
 
Starting in the late 1990s, during the Large-Scale 
Biosphere-Atmosphere project (LBA), a network of 
intensive eddy-covariance (EC) measurements was 
set up throughout the lowland Amazon to quantify 
surface energy, water, and carbon fluxes under dif-
ferent land covers (Keller et al. 2004). Data analysis 
from the EC flux towers revealed different ET sea-
sonality depending on the study site. Most of the 
sites showed a seasonal pattern similar to that ob-
served at Manaus during ARME – i.e., ET in phase 
with Rn, maintaining either a constant flux or 
showing a slight increase during the dry period 
compared with the rainy season (Costa et al., 2004; 
Hutyra et al. 2005; Juárez et al. 2007; da Rocha et al. 
2004; Sommer et al. 2003; Souza‐Filho et al. 2005; 
Vourlitis et al. 2002). A few studies, mostly located 
in the Southwestern Amazon (Aguiar et al. 2006) or 
at the transition between Amazon forests and cer-
rado savannas (Borma et al. 2009), observed higher 
ET in the rainy season compared with the dry sea-
son. 
 
Syntheses of flux tower observations across the 
Amazon (Costa et al. 2010; Hasler and Avissar 2007; 
Juárez et al. 2007), comparisons of the Amazon 
with other biomes (da Rocha et al. 2009), and a pan-
tropical analysis (Fisher et al. 2009) helped eluci-
date the seasonal and spatial variability of Amazo-
nian ET. Hasler and Avissar (2007) found strong 
seasonality in ET for the stations near the equator 
(2°S-3°S), with ET increasing during dry periods 
(June-September) and decreasing during wet peri-
ods (December-March), both correlated and in 
phase with Rn. In stations located further south 
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(9°S-11°S), ET and Rn did not present clear season-
ality. These studies found the best correlations be-
tween ET and Rn at these sites during wet periods, 
but no correlation during dry periods. The authors 
attributed this response to water stress during dry 
periods, especially at the drier southern sites.  
 
Negron-Juarez et al. (2007) analyzed ten LBA sites 
and concluded that all of them had higher ET dur-
ing the dry period than during the rainy period. 
Fisher et al. (2009) analyzed 21 pan-tropical sites 
and observed an increase in ET in the dry period 
compared to the rainy period, with Rn explaining 
87% of monthly ET variance. Da Rocha et al. (2009) 
analyzed ET data from EC flux towers at seven 
sites, four of them located in the northern Amazon 
Basin and three in the Cerrado (semideciduous for-
est, transitional forest floodplain, and cerrado). 
They observed that the seven sites analyzed could 
be divided into two functional groups in terms of 
ET seasonality. The southernmost sites, generally 
drier and with a longer dry season, showed de-
creased ET in the dry period compared to the rainy 
period. Minimum ET values of 2.5 mm/day were 
observed in transitional forests, and a minimum of 
1 mm/day was observed in the cerrado sites. The 
northern and more humid sites, with dry season 
length under four months, showed the opposite 
pattern, with increased ET in the dry season and 
maximum values of around 4 mm/day. ET, Rn, and 
vapor pressure deficit (VPD) were positively corre-
lated at these sites, suggesting that atmospheric 
conditions exert control over ET. However, it is im-
portant to consider that the most seasonal sites 
studied by da Rocha et al. (2009) had a predomi-
nance of deciduous and semi-deciduous vegeta-
tion. In these sites, the falling leaves in the dry pe-
riod may have exercised important controls over 
ET, together with climatic conditions.  
 
Costa et al. (2010) analyzed three evergreen rain-
forest wet equatorial sites (2°S-3°S) and two sea-
sonally dry rainforest sites (at about 11°S). They 
observed that, in general, dry season ET is greater 
than rainy season ET. Following previous studies, 
they found that Rn was the main controlling factor 

of ET in wetter sites, followed by VPD and aerody-
namic resistance. They identified different con-
trolling factors of ET in wet and seasonally dry 
sites. While ET seasonality in humid equatorial for-
ests was controlled only by environmental factors 
(i.e., abiotic controls), in seasonally dry forests ET 
was controlled by biotic parameters (e.g. stomatal 
conductance, gs), with surface conductance vary-
ing by a factor of two between seasons.  
 
Observational studies generally agree on the sea-
sonal pattern of ET in the Amazon rainforest, 
where ET is strongly dependent on net radiation 
(Rn) for seasonally humid forests. In the early 
2000s, however, most models still simulated ET as 
being in phase with precipitation (Bonan 1998; 
Werth and Avissar 2004; Dickinson et al. 2006), 
suggesting that water availability limits ET. Around 
2010, the LBA Data-Model Intercomparison Project 
(LBA-DMIP) compared the results of 21 land sur-
face and terrestrial ecosystem models to the com-
prehensive observational dataset from the LBA 
network of flux towers to evaluate how well the new 
generation of models could reproduce the Amazon 
rainforest and Cerrado functions (de Gonçalves et 
al. 2013). As part of this project, Christoffersen et al. 
(2014) concluded that models have improved in 
their capacity to simulate the magnitude and sea-
sonality of ET in equatorial tropical forests, having 
eliminated most dry-season water limitation. Their 
performance diverges in transitional forests, 
where seasonal water deficits are greater, but 
mostly capture the observed seasonal depressions 
in ET seen in the Cerrado. Many models depended 
only on deep roots or groundwater to mitigate dry 
season water deficits. Some models were able to 
match the observed ET seasonality, although they 
simulated no seasonality in stomatal conductance 
(gs). Some of these deficiencies can be improved by 
parameter tuning, but in most models these find-
ings highlight the need for continuous process de-
velopment (Christoffersen et al. 2014). 
 
In summary, ET is controlled by the balance be-
tween water demand imposed by the atmosphere 
(aboveground conditions) and the water supply in 
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the soil (belowground conditions). Both are consid-
ered abiotic controls (Costa et al., 2010) or ecohy-
drological mechanisms (Christoffersen et al. 2014). 
By opening and closing stomata, plants may exer-
cise important additional controls over evapotran-
spiration fluxes through stomatal canopy conduct-
ance (Costa et al. 2010; Christoffersen et al. 2014), 
resulting in a balance between photosynthesis and 
transpiration (Beer et al. 2009; Lloyd et al. 2009). 
These biotic (Costa et al., 2010) or ecophysiological 
(Christoffersen et al. 2014) control mechanisms 
over ET and their importance in the context of re-
gional climate will be discussed in detail in Chapter 
7 (Section 7.2.2). 
 
5.5 Main characteristics of the surface hydrolog-
ical systems in the Amazon 
 
The Amazon River Basin (including the Tocantins 
River as a tributary and other coastal basins) 
drains about 7.3 million km2 and discharges about 
16-22%% of all global river inputs to the oceans 
(Richey et al. 1989; see also Box 5.1). This vast hy-
drological system is formed by the Andes, the Gui-
ana and Brazilian shields, and the Amazon plain 
(Sorribas et al. 2016). As a consequence of the sea-
sonal rainfall cycle (Section 5.2.2), the main stem 
Amazon River and its tributaries exhibit high and 
low river levels a few months after the preceding 
wet and dry seasons.  
 
In general, rivers in the southern Amazon Basin 
(e.g., Solimões, Madeira, Xingu, Tapajós, Tocan-
tins-Araguaia) peak from April–May, whereas riv-
ers in the northern Amazon (e.g., Japura-Caquetá, 
Rio Negro) peak from May–June (Espinoza et al. 
2009a, b, Marengo and Espinoza et al. 2016). At an-
nual time scales, the hydrological contribution of 
southern and northern rivers is roughly equivalent 
due to much higher total rainfall in the smaller 
northern basins compared to the larger southern 
basins. 
 
5.5.1 Seasonality of discharge 
 
As noted above, the discharge of the mainstem Am-
azon River and its tributaries integrates hydrologi- 

cal fluctuations occurring upstream. These hydro-
logical dynamics show a strong a few months (See 
Section 5.2.2), with significant variations in the 
timing and magnitude of discharge across the Am-
azon’s tributary watersheds (Sorribas et al. 2016). 
The southern and western reaches of the Amazon 
River usually flood first, peaking between March 
and May. In the central Amazon, river levels are 
controlled by contributions from northern and 
southern tributaries, generally peaking in June 
(Figure 5.7). 
 
Long-term discharge measurements recorded 
near the central Amazon city of Óbidos, for exam-
ple, indicate a peak discharge approaching 
~250,000 m3s-1 during the high-water period in 
June, and a minimum discharge of ~100,000 m3s-1 
during the low-water period in November (Gould-
ing et al. 2003). 
 
Because the northern headwaters of the Amazon 
are near the equator, their water levels fall between 
October and February, even as the Amazon River is 
rising due to contributions from the large southern 
tributaries. Small coastal watersheds of the north-
ern Amazon (e.g., the Araguari) are also influenced 
by ocean tides in their lower reaches. In contrast, 
most of the Amazon River’s southern tributaries 
reach their highest levels in March or April (at 
points >300 km upstream from their mouths) and 
their lowest levels between August and October 
(Goulding et al. 2003). For example, discharge at 
Itaituba in the Tapajós River peaks at ~23,000 m3s-

1 in March and reaches its minimum (~5,000 m3s-1) 
in October (Figure 5.7). To its west, the Purús River 
at Arumã-Jusante shows even more pronounced 
variability, with a peak discharge of 11,000 m3s-1 in 
April and a minimum discharge of ~1,000 m3s-1 in 
September (Coe et al. 2008). The lower sections of 
these southern tributaries are heavily influenced 
by a backwater effect of the Amazon River itself, 
rising and falling in response to changes in the 
main stem (Sorribas et al. 2016).  
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BOX 5.1: How Large is the Amazon River? 
 
 “Born in the lofty, snow-clad Andes, the Amazon flows four thousand kilometers until it confronts the Atlantic at 
the equator. The Amazon is not only the world’s longest river; it carries more water than any other river – more 
than ten times that of the Mississippi, for example (Figure B.5.1.1). One-fifth of all the water flowing off the face of 
the earth passes through the Amazon’s mouth. Such is the force of the Amazon as it clashes with the Atlantic that 
it pushes a vast plume of freshwater for hundreds of kilometers into the sea. Five centuries ago a Spanish explorer 
traveling up the coast of Brazil noted that at a certain point the sea tasted fresh, even though his ship was out of 
sight of land. Pinzón dubbed that spot the sweet sea (mar dulce), which historians and geographers take to be the 
mouth of the river, named after women warriors in Greek mythology. The Southern Equatorial Current pushes this 
turbid plume, which reaches some 400 kilometers long and between 100 and 200 kilometers wide, in a northwest-
erly direction up the coast of Amapá and the neighboring Guianas. Because it is lighter, the freshwater overrides 
the salty oceans and dilutes and muddies the surface for up to one million square miles.” (Quoted from Smith 2002).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B.5.1.1. The discharge of the world’s 10 largest rivers.  
 
 
 
Most people know that the Amazon River is the largest river of the world. What most people do not realize is just how 
large it really is. This figure Figure B.5.1.1 compares the world’s 10 largest rivers by discharge, showing the remark-
able difference between the Amazon and all other rivers. The Amazon discharges about five times more water to the 
ocean than the world’s second largest river, the Congo. The magnitude of the difference is so striking that the Ama-
zon´s largest tributary, the Madeira – discharging about 50,000 m3/s to the main stem – would rank second among 
the world’s largest rivers if considered independently. 
 
A large discharge is a direct consequence of both a large drainage area and high precipitation. The 
Amazon ranks first in both variables, with the largest drainage area and the highest rainfall in the 
world. 
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5.5.2 Seasonality of floodplain dynamics 
 
Fluctuations in rainfall and river discharge drive 
pronounced seasonal changes in the water level of 
large Amazon rivers, causing them to overflow 
their banks into adjacent floodplains. On a local 
scale, flooding can also result directly from rainfall 
in areas with poorly drained soils or rising ground- 
 
water levels, as in the case of the Llanos de Mojos 
in Bolivia. The periodic rise and fall of water levels 
– often referred to as the seasonal flood pulse – 
connects rivers and their floodplains during part of 
the year (rivers rise between November and June, 
and recede between June and November), result-
ing in heterogeneous habitat structure, rapid recy-
cling of nutrients and organic matter, and high 
rates of biological production (Junk et al. 2012). The 
Amazon River and its large tributaries are charac-
terized by a monomodal flood pattern with an av-
erage amplitude of 10 m near Manaus, ranging 
from 2 to 18 m depending on the location and year 
(Melack and Coe 2013). The greatest annual river-
level fluctuations occur in the southwestern Ama-
zon, especially the Madeira, Purus, and Juruá Riv-
ers, while the smallest changes happen in the east. 
Small (low-order) streams in the Amazon lowlands 
exhibit complex hydraulics, with backwater effects 
resulting in a less predictable polymodal hydrolog-
ical regime (Piedade et al. 2001).  
 
The characteristic vegetation in these flooded re-
gions is strongly influenced by hydrological dy-
namics, including maximum inundation extent, 
flood amplitude, and the duration of the low- and 
high-water phases of the flood pulse. On average, 
the lowland rivers of the Amazon are flooded for 6-
7 months out of the year, with southern tributaries 
flooding from January-May and northern tributar-
ies from June to August. Conversely, the southern 
Amazon undergoes a pronounced dry season from 
August to December, which generally coincides 
with the low-water period. In the north, floods can 
last until September (Goulding et al. 2003). Season-
ally inundated wetlands thus cover an extensive 
(17%) area of the lowland Amazon – estimated at 
8.4×105 km2 of the region <500 m above sea level 

(Hess et al. 2015). About 44% of the wetland area is 
located in the Madeira River and Rio Negro water-
sheds, the Amazon’s two largest tributaries (Figure 
5.2). The Marañon sub-basin has the highest pro-
portion of total area as wetland (20%), followed by 
the Madeira (19%) and Içá-Putumayo (17%). The 
Tapajós (5%) and Xingu (8%) sub-basins have the 
lowest proportion of wetland (Hess et al. 2015). 
 
5.6 The role of rivers in biogeochemical cycles 
 
Rivers and related aquatic systems are key ecosys-
tems in the Amazon region. The region’s underly-
ing geology and landscape structure determine 
land-water connections via hydrological flow paths 
that influence river flow and chemistry. In dis-
turbed systems, hydrological dynamics are strong-
ly influenced by the type and intensity of land use, 
which may alter rates of runoff, infiltration of water 
into soils, and water chemistry. Castello and 
Macedo (2015), considering river systems of differ-
ent orders, stressed that soil attributes (chemical, 
physical, and biological) and land use are the main 
drivers of river biogeochemistry and metabolism. 
In small catchments, deforestation may increase 
inputs of nutrients, phosphorus, and carbon to 
aquatic environments, dramatically changing their 
natural functions. For instance, studies in small 
catchments identified extensive growth of an 
aquatic herbaceous species, leading to a high con-
centration of dissolved organic matter and, conse-
quently, higher decomposition and respiration 
rates (Deegan et al. 2011). 
 
The cascade from small to larger river systems de-
pends on the extent of deforestation, soil type, and 
topography. Rivers are important providers of dis-
solved organic matter and nutrients to the ocean. 
This organic matter's chemical characteristics are 
key in defining its role in the coastal ocean’s me-
tabolism. The Amazon River plume has a global in-
fluence. Recent data shows that 50-76% of the dis-
solved organic matter carried by the Amazon to the 
ocean is stable (Medeiros et al. 2015), contributing 
to long‐term storage of terrigenous carbon and po-
tentially adding to the deep ocean carbon pool. 
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The biogeochemistry of carbon in aquatic systems 
involves production, transformations, and connec-
tions to terrestrial systems in environments rang-
ing from small rivers to large river-floodplains. 
Small rivers, which are well connected to the sur-
rounding watershed, are strongly influenced by ri-
parian vegetation and biota. In the case of large riv-
ers and their flood plains, on the other hand, the 
processes of carbon, nitrogen, and other nutrients 
are intensively modulated within the aquatic sys-
tem (see also Section 6.2.2). 
 
Changes in river flow and the frequency of floods 
and droughts are connected to changing climate 
patterns (Section 5.2), as are aquatic biogeochemi-
cal cycles. Martinelli et al. (2010) showed a decrease 
in the concentration of nitrogen species (dissolved 
inorganic and organic nitrogen) in aquatic systems 
in the Amazon with increasing river flow, but also 
noted the effects of changing land use and increas-
ing population density (>10 people/km2) in the re-
gion. One important driver of nutrient flow to 
aquatic systems is the soil parent material and 
chemistry. On weathered, heavily leached tropical 
soils, vegetation cover is a key component in the ni-
trogen and carbon cycles (Chapter 6). Nitrogen 
leaching to aquatic systems from “terra firme'' may 
vary from 3 to 6 kg N-NO3/ha/year with stream ex-
ports of around 4 kg-N/ha/yr (Wilcke et al. 2013). In 
contrast, in flooded areas where N is exported as 
dissolved NO3 and NH4, N exports can reach up to 
12 kg-N/ha/yr. Lesack and Melack (1996) analyzed 
the impact of deforestation on nitrogen export to 
the aquatic system, finding an export of 2.7 kg N-
NO3/ha/yr for upland forests along the floodplain. 
After partial deforestation in the same area, meas-
urements identified a 40% increase in nitrogen ex-
port in stream water, reaching 3.6 kg N-NO3/ha/yr 
(Williams and Melack 1997). 
 
In contrast, dissolved phosphorus export is typi-
cally low. Values reviewed by Buscardo et al. (2016) 
indicate dissolved phosphorus export in streams 
ranging from 0.01 kg/ha/yr in a terra-firme forest 
(Leopoldo et al. 1987) to 0.006 kg P/ha/yr in an up-
land forest bordering a floodplain lake (Lesack and 
Melack 1996). Exports were an order of magnitude 

higher in a lower montane forest in Ecuador, 
reaching 0.6 kg/ha/yr (Wilcke et al. 2008). 
 
5.7 Conclusions 
 
The Amazon´s rainfall, river flow, and flood re-
gime exhibit considerable variability at seasonal, 
interannual and interdecadal scales, with extreme 
flood and drought events becoming more common 
in the last two decades. Seasonal variability is 
mainly controlled by solar forcing. ENSO events 
are a major cause of interannual variation in rain-
fall, flow, and floodplain extent in the Amazon Ba-
sin. Central-Pacific El Niños (La Niñas) are related 
to rainfall deficits (excesses) over the upper part of 
the basin (Andean region of Colombia, Ecuador, 
and Peru), but these anomalies are weaker during 
Eastern-Pacific El Niño (La Niña) events. During 
Eastern-Pacific El Niño events, rainfall anomalies 
are stronger in the Madeira Basin. The interannual 
modes of variability are modulated by interdecadal 
modes of the nearby oceans, such as the Pacific De-
cadal Oscillation and the Atlantic Multidecadal Os-
cillation. Moreover, extreme rainfall and flooding 
events are not necessarily associated with ENSO 
events.  
 
Interactions between large-scale atmospheric cir-
culation and orographic induced circulations re-
sult in high spatial variability of precipitation over 
the Amazon-Andean region, which may reach 
7,000 mm/year – the highest rainfall levels seen 
anywhere in the Amazon Basin. As a result of these 
interactions, the Andean Basins also show the larg-
est runoff per unit area, and Andean rivers deliver 
sediments, pollutants, and nutrients downstream 
to the Amazon lowlands. 
 
5.8 Recommendations 
 
● The main processes of the Amazon hydrocli-

mate system (convection, mesoscale circula-
tions, land surface processes) are associated 
with the rainforest's presence. Preserving and 
restoring the Amazon forest is essential to 
maintain these processes, which are important 
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locally, to the Andes, to South America, and 
globally.  

● It is still unknown which factors drive recent ac-
celerations in interannual climate variability, 
particularly given the interactions among defor-
estation, changes in atmospheric greenhouse 
gas concentrations, and natural modes of cli-
mate variability. Further research is needed to 
attribute the causes of this acceleration and to 
reduce uncertainties, helping to predict impacts 
and define conservation strategies.  
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