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Key Messages 

• Over the last four decades, and especially over the last two, many Amazonian aquatic ecosystems 
have become less connected and more polluted.  

• Prior to the massive impacts of dams built over the past four decades, overexploitation of plant and 
animal species was the most significant factor causing aquatic ecosystem degradation in the Amazon 
Basin. This degradation continues to advance. 

• The spatial distribution of impacts on biodiversity and ecological processes is uneven.  
• Agricultural and industrial waste and sewage contaminate Amazonian waters. 
• Mercury contamination from gold mining (legal or not) is a major environmental and public-health 

concern. 
• Hydroelectric dams block fish migrations and the transport of sediments and associated nutrients, as 

well as altering river flows and oxygen levels.  
• Deforestation greatly affects the physical and chemical characteristics of watercourses and when ag-

riculture replaces forests can release fertilizers, herbicides, and other pollutants into the water, as 
well as sediments from soil erosion. 

• Petroleum extraction and resulting oil spills can have catastrophic impacts on aquatic ecosystems.  
• The biological productivity of aquatic ecosystems is affected both downstream and upstream of these 

impacts. 
 
 
Abstract 

The Amazon’s aquatic ecosystems are being destroyed and threats to their integrity are projected to grow 
in number and intensity. In this chapter we review a number of these threats. Hydroelectric dams (307 
existing or under construction) have changed almost every aspect of Amazonian aquatic ecosystems, and 
many more dams are planned (239), posing threats to the region’s enormous aquatic biodiversity and fish-
eries resources. By blocking fish migrations dams affect important commercial species, as well as the flow 
of sediments and nutrients that sustain aquatic food chains and support fish populations. By altering 
stream flows and flooding regimes, dams and their reservoirs also disrupt downstream ecosystems, 
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including flooded forests and the floodplain lakes that are essential for breeding of many fish species. The 
low-oxygen (anoxic) conditions found near reservoir bottoms cannot be tolerated by many fish species. 
They also favor the formation of highly toxic methylmercury and the production of methane, a powerful 
greenhouse gas. Small dams and reservoirs can have substantial impacts that are often even greater than 
large dams on a per-Megawatt (MW) or per-hectare basis. In Brazil the definition of “small” dams has pro-
gressively increased from less than 10 to 30 to 50 MW, opening an expanding loophole in the environmen-
tal licensing system. Overharvesting of fish for both food and the ornamental trade has depleted fish 
stocks and altered their ecological roles. Native species are threatened by invasive species that escape 
from aquaculture operations and potentially from proposed inter-basin river diversions. Deforestation 
changes the chemical and physical properties of streams, including releasing natural deposits of heavy 
metals (such as mercury from erosion) and eliminating aquatic species that inhabit watercourses in Am-
azonian forests. Pollution sources include toxins from agriculture and industrial and urban waste, such 
as plastic; mercury; transition metals like Cu, Cd, Pb, and Ni; urban sewage; and various forms of toxic 
waste. Oil spills have had disastrous consequences in Ecuador and Peru. Gold mining releases large 
amounts of sediments, in addition to releasing mercury and provoking the clearing and degradation of 
floodplain forests. Roads contribute to the fragmentation of streams and river tributaries as well as gen-
erating sediments through soil erosion, in addition to the sediment from the deforestation that roads pro-
voke. Navigational waterways cause multiple impacts on rivers converted to this use, particularly affecting 
the reproduction habitats of freshwater species. Climate change impacts aquatic ecosystems through in-
creased temperature and extreme droughts and floods. Interactions among drivers mean many of these 
impacts are even more harmful to aquatic ecosystems. The authors of this chapter recommend that no 
more hydroelectric dams with installed capacity ≥10 MW be built in the Amazon, that investments in new 
electricity generation should be redirected to wind and solar sources, and that all environmental assess-
ments should incorporate synergistic and cumulative impacts in their analyses. In addition to the ecosys-
tem impacts that are the subject of this chapter, the extraordinarily great social impacts of Amazonian 
dams (Chapter 14) lead to the same conclusion. Fortunately, countries like Brazil have abundant undevel-
oped wind and solar potential. 
 
Keywords: Climate change, dams, fish, invasive species, mercury, oil spills, pollution, river diversion, toxic waste, wa-
terways 
 
20.1 Introduction 

The Amazon’s rivers and streams reflect the land-
scapes through which they flow. The great Ama-
zon limnologist Harald Sioli (1984) explained that 
“The big rivers receive their waters from a dense 
network of Igarapés, streams and brooklets. The 
total length of their courses exceeds more than a 
thousand times that of the Amazon; this implies 
an intimate contact of the Amazon aquatic system 
with its terrestrial surroundings and a determin-
ing influence of the latter on the chemistry and bi-
ology of the small watercourses.” This influence 
reflects not only geological differences such as 
those that produce the region’s white-, black- and 
clear-water rivers, but also the effects of human 

activity. These watercourses are often compared 
to a person’s blood or urine - the subject of medi-
cal testing to identify problems in a human body. 
In the same way, the deteriorating health of a ter-
restrial or aquatic ecosystem will be reflected in 
the quality and quantity of the water flowing from 
its hydrographic basin. 

The sheer magnitude of the flows in the Amazon 
reflect the region’s global significance, annually 
discharging 6.6 trillion cubic meters of fresh wa-
ter to the oceans, along with 600-800 million tons 
of suspended sediments (Filizola and Guyot 2011). 
The Amazon’s aquatic biodiversity is also globally 
significant. So far, 2406 fish species have been de-
scribed (Jézéquel et al. 2020), although hundreds 
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more remain to be described such that the actual 
number is likely to be above 3,000 species (Val 
2019). Described floodplain tree species total 918 
(Wittmann et al. 2006). As mighty as the Amazon 
River is, its aquatic ecosystems are also fragile 
(e.g., Castello et al. 2013a). The multiple threats 
these ecosystems face are the focus of this chap-
ter. 

Amazonian rivers and streams connect distant 
parts of the vast Amazon Basin, and impacts orig-
inating at any given location may be felt thou-
sands of kilometers away. A dam altering down-
stream sediment flows, for example, can affect 
ecosystems all the way to the Atlantic Ocean and 
even in the Amazon’s estuary. Likewise, a dam 
blocking migratory species causes upstream ef-
fects reaching all the way to the Amazon’s head-
waters in the foothills of the Andes. The same is 
true for other drivers of change in freshwater sys-
tems (Figure 20.1); overharvesting of fish stocks 
(both commercial and ornamental species) can 
disrupt aquatic food webs; introduction of inva-
sive species can disturb native species communi-
ties, causing habitat loss; and deforestation can al-
ter water quality, temperature, and climate at var-
ious scales. Water pollution (e.g., agricultural and 
industrial wastes, plastics, medicines, oil spills, 
and transition metals such as mercury) can have 
widespread and cumulative effects, as can infra-
structure such as dams, roads, river diversions, 
and waterways. Other factors include urban and 
industrial growth, agriculture, and regional cli-
mate change. These drivers have synergistic in-
teractions among themselves and, when acting to-
gether, can amplify each other’s impacts (Costa et 
al. 2011; Anderson et al. 2018; Athayde et al. 2019; 
Castello and Macedo 2016; Silva et al. 2019). The 
construction of dams, for example, inevitably re-
sults in the construction of roads, which in turn 
may increase deforestation for pasture and com-
modity crops such as soy (Fearnside 1989; Guer-
rero et al. 2020). These land-use changes ulti-
mately result in the pollution of rivers and 
streams, be it from the large-scale use of fertiliz-
ers and agricultural chemicals, the formation of 
toxic methylmercury in reservoirs, or rapid 

population growth from migration spurred by 
dam construction. These multiple impacts on 
aquatic ecosystems threaten the Amazon’s enor-
mous aquatic biodiversity, as well as the health 
and well-being of many Amazon residents who de-
pend on fisheries and other aquatic resources for 
their livelihoods (see Chapter 21).  

Aquatic systems in the Amazon are environmen-
tally diverse and include many characteristics 
that can pose unique challenges for aquatic organ-
isms. Among these are habitat heterogeneity, dif-
ferent river types (such as white-, black- or clear-
water), and dramatic seasonal flood events (i.e., 
flood pulses) when rivers overflow their banks and 
invade adjacent forests, creating habitats such as 
várzeas (white-water floodplains) and igapós 
(black-water swamps) that are essential for feed-
ing and nurturing fish (Barletta et al. 2010). Water-
quality indicators, such as dissolved oxygen, tem-
perature, electrical conductivity, and pH, may also 
vary seasonally and spatially depending on the 
drainage area (e.g., the Andes, Guiana, and Brazil-
ian shields), requiring aquatic organisms to adjust 
to changing conditions. These challenges have fa-
vored the evolution of adaptive strategies at all 
levels of biological organization (Junk et al. 1989; 
Campos et al. 2019; Val 2019; Piedade et al. 2000). 
Fish and other aquatic animals have evolved strat-
egies to cope with extreme environments (e.g., wa-
ter with low oxygen, high acidity, low ion concen-
trations, and high temperatures) and high sea-
sonal variability in food resources, resulting in 
high biotic diversity (Val et al. 2006; Val and Al-
meida-Val 1995; Zuanon et al. 2005). 

Interactions between extreme habitat conditions 
and anthropogenic disturbance are driving many 
organisms to their physiological limits; adapta-
tions to their natural environment do not always 
promote survival under anthropogenic stresses. 
An emblematic example is the effect of oil spills on 
fish. Among the many strategies Amazonian fish 
have developed to cope with low oxygen is the abil-
ity exploit the water-air interface that, in the case 
of an oil spill, increase their contact with pollu-
tants concentrated at the top of the water column 
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(Val and Val 1999; Dos Anjos et al. 2011; Souza et al. 
2020). 

The interactions among the different drivers of 
degradation in aquatic systems are summarized 
in Figure 20.1. This chapter begins with a discus-
sion of hydroelectric dams because of their very 
large and diverse impacts in the region, and the 
many connections between dams and other driv-
ers of change in aquatic ecosystems. It then re-
views the effects of overharvesting, invasive spe-
cies, pollution, mining, roads, river diversions, 
waterways, and climate change on Amazon 
aquatic systems. The chapter concludes with a 
discussion of synergistic effects among drivers, 
followed by conclusions and recommendations.  

20.2 Infrastructure 

20.2.1 Dams 

20.2.1.1 Existing dams and future plans 

We identified 307 dams that exist or are under 
construction and 239 that are planned or pro-
jected (Figure 20.2). These numbers vary in the 

literature (Finer and Jenkins 2012; Lees et al. 
2016; Almeida et al. 2019) due to differences in the 
areas covered, inconsistent definitions of what 
constitutes a “planned” dam (especially for small 
dams), and variable information across the eight 
countries and one overseas territory comprising 
the Amazon Basin. Plans for future hydroelectric 
dams are also continually in flux.  

“Small” dams have less hydrological impact than 
large dams in absolute terms, but relative to their 
installed capacity for energy generation they have 
a significantly greater impact (Timpe and Kaplan 
2017). Since 2016, “small” hydroelectric dams 
have been defined in Brazil as those with less than 
50 MW of installed capacity; the limit was 30 MW 
from 2004 to 2016, and 10 MW before 2004. Dams 
in this category are exempt from federal environ-
mental licensing and can be built with (generally 
less-rigorous) state licensing, thus motivating 
both the expansion of this loophole by redefining 
“small” dams and a rapidly increasing number of 
“small” dams in the Brazilian Amazonia. The def-
inition of “small” dams varies widely among coun-
tries, with 10 MW being “increasingly recognized 
as the international standard” (Couto and Olden  

Figure 20.1 Flowchart of relationships among drivers leading to impacts on aquatic life. 
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Figure 20.2 Existing and planned hydroelectric dams and waterways in the Amazon. Currently there are 307 dams existing 
or under construction, and 239 planned or projected (total = 546). 
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2018). Brazil’s relaxing its definition to include 
dams up to 50 MW represents a significant set-
back in environmental control.  

20.2.1.2 Fish communities  

Hydroelectric dams negatively impact fish com-
munities both above and below the reservoir due 
to habitat loss and severe changes in the hydrolog-
ical regimes of flooded forests (Ribeiro and 
Petrere 1988; Ribeiro et al. 1995; Santos et al. 
2018). The conversion of a stretch of river from 
running water (lotic) to still water (lentic) either 
eliminates or greatly reduces the populations of 
many species, few of which are adapted to the new 
environment (Agostinho et al. 2016). Fish commu-
nities become structurally and functionally differ-
ent from the pre-dam baseline (Araújo et al. 2013; 
Arantes et al. 2019a, b), with one of the most evi-
dent impacts being the impediment of both up-
stream and downstream migration (Pelicice et al. 
2015a). Only some of the highly diverse migratory 
fish species are able to use fish passages (Pelicice 
and Agostinho 2008). The famous “giant catfish” 
of the Madeira River (Brachyplatystoma spp.) is 
among those that have not been able to use the 
passages in the large Santo Antônio and Jirau 
Dams in the Brazilian Amazon, although they are 
physically able to climb the passages if placed in-
side them (Figure 20.3). This is because the in-
stinct of the fish during their annual migration to 
spawn in the headwaters is to swim up the main 
channel of the river, not to enter small streams 
like the ones imitated by the passages. Although 
not yet documented for the Amazon, basin-wide 
extirpations of migratory species have occurred in 
many rivers of the world due to ineffective fish 
ladders (see Pringle et al. 2000; Freeman et al. 
2003). Amazonian dams and their ineffective fish 
passages have already seriously disrupted the mi-
gration routes of many fish species, resulting in 
declining fisheries both above and below the dams 
and in changes in assemblage structure and func-
tional traits of fish communities (review in Du-
ponchelle et al. 2021). Ineffective fish ladders in 
the Amazon have caused declines of migratory 
species at the Santo Antônio Dam on the Madeira 

River in Rondônia (Hauser et al. 2019) and the La-
jeado Dam on the Tocantins River in the state of 
Tocantins (Agostinho et al. 2007, 2012). In other 
cases, no fish passage was provided, as at the 
Coaracy Nunes Dam on the Araguari River in 
Amapá (Sá-Oliveira et al. 2015a), the Samuel Dam 
on the Jamari River in Rondônia (Santos 1995), 
and the Tucuruí Dam on the Tocantins River in 
Pará (Ribeiro et al. 1995). The resulting loss of fish-
eries has severe social impacts.” 

 

 
20.2.1.3 Aquatic mammals, reptiles, amphibians, and 
insects 

Many other aquatic taxa are affected by hydroelec-
tric dams (Lees et al. 2016). For example, dams can 
cause the fragmentation of populations of dol-
phins, amphibians, and reptiles (especially larger 
ones such as caimans and turtles). Dams can also 
affect these animals indirectly – e.g., they can de-
crease prey availability for dolphins (Salisbury 
2015; Araújo and Wang 2015). Population frag-
mentation by dams disrupts gene flow and can re-
sult in small and therefore vulnerable populations 
(Gravena et al. 2014; Paschoalini et al. 2020).  

The beaches on which turtles often lay their eggs 
are commonly flooded by dam-altered hydrology 
(Alho 2011). This occurs not only in the reservoir 

Figure 20.3 The various species of “giant catfish” in the Ma-
deira River are already heavily impacted by the Santo Antônio 
and Jirau Dams that have blocked their annual spawning mi-
gration since 2011. Source: Kileen (2007). Photograph: Russell 
Mittermeier 
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area itself (Norris et al. 2018), but also in down-
stream areas where water levels vary depending 
on power generation (Salisbury 2016). A number 
of planned dams are particularly threatening to 
turtles (Gonzales 2019). For instance, on the Rio 
Branco in Roraima the planned Bem Querer Dam 
(Fearnside 2020a) is likely to impact downstream 
turtle breeding beaches (e.g., Nascimento 2002). 
On the Trombetas River in Pará, the dam that is 
planned to be the centerpiece of the Barão do Rio 
Branco Project announced by Brazil’s current 
presidential administration (The Intercept 2019) 
would be just upstream of one of the Amazon’s 
largest turtle-breeding beaches, the “tabuleiro do 
Jacaré” (e.g., Forero-Medina et al. 2019; Zwink and 
Young 1990).  

In a study of frogs at the Santo Antônio Dam on the 
Madeira River, the composition of species assem-
blages present near the natural river margin be-
fore reservoir flooding did not re-establish on the 
new margin up to four years after the reservoir 
was filled (Dayrell et al. 2021). Frog species rich-
ness near the new margins increased by 82% one 
year after filling, but this percentage had declined 
to 65% by four years after filling and showed “no 
tendency to return to the original assemblage.”  

Dam impacts on aquatic insects vary; species that 
depend on fast-moving water lose habitat with the 
creation of reservoirs and thus decrease in abun-
dance; while others that breed in the standing wa-
ter of a reservoir, such as mosquitos, can undergo 
population explosions. At the Tucuruí Dam, in 
Brazil’s Pará state, up to 39% of the reservoir was 
covered by macrophytes (aquatic plants) in the 
first years after impoundment (Lima et al. 2000), 
providing breeding sites for mosquitos in the ge-
nus Mansonia (Fearnside 2001). The resulting 
“mosquito plague” caused many of the people who 
had been resettled near the reservoir to abandon 
their lots and initiate a new hotspot of deforesta-
tion elsewhere (Fearnside 1999). Conversely, 
Anopheles mosquitos (the vectors of malaria) di-
minished in abundance after completion of the 
Tucuruí Dam (Tadei et al. 1991). At the Samuel 
Dam (in Brazil’s state of Rondônia) Culex 

mosquitos exploded dramatically and Anopheles 
mosquitos, which were already abundant before 
construction of the dam, are also believed to have 
increased (Fearnside 2005) (Chapter 21). 

Alteration of flows downstream of dams can also 
impact aquatic insects drifting in the water (Cas-
tro et al. 2013; Patterson and Smokorowski 2011) 
and those that inhabit the edges of the river, such 
as mayflies (Ephemeroptera) (Kennedy et al. 
2016). Changes in substrate composition (i.e., 
from coarse to fine substrates) downstream of 
dams is also known to negatively affect aquatic in-
sects (Wang et al. 2020). 

20.2.1.4 Reservoir stratification 

Reservoirs commonly stratify into layers with 
colder water at the bottom and a division (thermo-
cline) at 2-10 m depth separating the warmer and 
colder layers. Water does not mix between the two 
layers. Oxidation of organic material at the bottom 
consumes oxygen to produce CO2 until oxygen is 
no longer available, after which decomposition 
must end in methane (CH4). Stratification is essen-
tially universal in storage dams such as Tucuruí 
on the Tocantins River (Figure 20.4). In run-of-
river dams, stratification will depend on the veloc-
ity with which the water moves through the reser-
voir. In run-of-river dams where the main channel 
remains free of stratification, as at the Santo An-
tônio Dam on the Madeira River, bays and flooded 
tributaries can still stratify (Fearnside 2015a). 

Underwater biomass decomposition leads to the 
emission of both CO2 and CH4. One ton of methane 
has an impact on blocking the passage of infrared 
radiation that is 120 times that of a ton of CO2 
while it remains in the atmosphere (Myhre et al. 
2013). If we are to stay within either of the Paris 
Agreement’s limits (mean global temperature 
“well below 2°C” or below 1.5°C above the prein-
dustrial mean), then the impact of CH4 in terms of 
CO2-equivalents must be considered on a 20-year 
basis, which essentially triples the impact of hy-
droelectric dams on global warming (Fearnside 
2015b,  2017a,b).  The  impacts  of  different green- 
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house gases are expressed in terms of CO2 equiva-
lents based on global-warming potentials (GWPs), 
which represent the effect on global temperature 
over a given time horizon from emitting one ton of 
the gas relative to the simultaneous emission of 
one ton of CO2. Considering the 20-year GWPs 
from the IPCC’s 5th Assessment Report, 25% of 
lowland dams would emit even more CO2 equiva-
lents per megawatt-hour generated than a coal-
fired power plant, and 40% of them would emit 
more than generation from natural gas (Almeida 
et al. 2019). The result would be even worse for 
Amazonian dams if emissions from the water 
passing through the turbines and spillways were 
included in these calculations. Box 20.1 explains 
the contribution of Amazonian dams to green-
house-gas emissions.  
 
Considerable uncertainty exists in calculating 
greenhouse-gas emissions (i.e., CO2, CH4 and N2O) 

from dams on the scale of the Amazon as a whole. 
There is much variation from dam to dam with 
reference to key variables such as the depth of wa-
ter at the intakes of the turbines and spillways, the 
average turnover time of water in the reservoir, 
and the existence of bays and other areas in the 
reservoir where turnover times are much longer 
than the average (Fearnside 2013a, 2015a). For 
example, run-of-river dams emit less than storage 
ones because they have smaller reservoirs with 
faster water turnover times and less variation in 
water level. However, run-of-river dams can still 
emit methane even if the water flow is sufficient to 
prevent stratification in the main channel of the 
river because the tributaries and bays stratify, and 
methane produced in them reaches the spillways 
and turbines to be emitted downstream (Fearn-
side 2015a; see also Bertassoli Jr et al. 2021). An-
other key aspect in the variation in dam-related 
emissions  is  dam  location;  lowland dams (eleva- 

Figure 20.4 Reservoir stratification in the Tucuruí reservoir. In the bottom water (hypolimnion) oxygen is depleted and methane 
(CH4) levels increase with depth, reaching high levels at the levels of the spillways and turbine intakes. Source: Fearnside and Pueyo 
(2012). 
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BOX 20.1 Greenhouse-gas emissions from Amazonian dams 
 
Greenhouse-gas emissions from Amazonian dams include both methane produced in stratified reser-
voirs and CO2 from trees killed by flooding (Figure B20.1). The dead trees subsequently decay and release 
greenhouse gases (i.e., Abril et al. 2013; Fearnside 1995, 2002a, 2005). In addition, trees near the edges 
of reservoirs suffer stress from the high water table, causing mortality (dos Santos Junior et al. 2013, 
2015; Fearnside 2009). The large amount of initial biomass when a reservoir is flooded (which is espe-
cially high in tropical forests), in addition to the presence of easily oxidized labile carbon in the soil, leads 
to young reservoirs being larger emitters than older ones (Barros et al. 2011). After these carbon pools 
are depleted, emissions decline but do not fall to zero (Fearnside 2009, 2016).  
 

 
 

Figure B20.1 Some of the approximately 100 million trees (diameter > 10 cm) killed in the shallow reservoir behind the Balbina 
Dam. The light-colored trees are dead. The reservoir has over 3,000 islands (bottom panel), increasing the impact on emissions 
from tree mortality, as well as the fragmentation impact on terrestrial fauna. Source: Fearnside 1989. Photographs: Philip Fearn-
side. 
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tion <500 m) produce more than triple the emis-
sions per megawatt-hour generated than dams at 
higher elevations (Almeida et al. 2019). Similarly, 
tropical dams have higher emissions than those at 
higher latitudes (Barros et al. 2011). Because a 
substantial amount of information is needed 
about each dam in order to estimate greenhouse-
gas emissions, it is difficult to make valid regional, 
national, or global estimates. Simple extrapola-
tion based on installed capacity, which has been 
done in various global estimates, is insufficient. 

Emissions resulting from the reservoir surface 
tend to be the only ones considered when evaluat-
ing the impacts of dams on climate change, which 
greatly underestimates total dam emissions (e.g., 
Brazil 2004). Reservoir surfaces can emit gases 
both by diffusion and by bubbling (ebullition). Dif-
fusion is a large source in the first two years after 
reservoir filling, but subsequently declines in im-
portance (Dumestre et al. 1999). Bubbling is 
greater in shallow parts of the reservoir, and it oc-
curs at irregular intervals, with short periods of 
intense bubbling interspersed with long periods 
with few bubbles (Lima 2002). The treatment of 
these effects in calculating annual emissions from 
a reservoir can have dramatic effects on the calcu-
lated impact (Pueyo and Fearnside 2011; Fearn-
side and Pueyo 2012). The often-neglected emis-
sions from turbines and spillways (“downstream 
emissions”) are critical (Fearnside 2013a, b, 
2015a). Downstream emissions, which are largely 
proportional to water flow, are generally greater 
than those from the reservoir surface, which are 
proportional to reservoir area. This is the case of 
the Petit Saut Dam in French Guiana, which has 
much more data on emissions than any other Am-
azonian dam (Delmas et al. 2001; Abril et al. 2005). 
In Balbina, which has a large reservoir and little 
water flow, surface emissions are slightly larger 
than downstream emissions, whereas in Tucuruí, 
which has approximately the same reservoir area 
as Balbina but much more water flow, down-
stream emissions predominate (Fearnside 2002a; 
Kemenes et al. 2007, 2011, 2016). 

In the first years after impoundment there is nor-
mally an explosion of floating and rooted aquatic 
plants (macrophytes) due to a flush of nutrients in 
the water when the soil and litter are first flooded 
and from leaves dropped by dying trees. The mac-
rophytes add to the oxygen depletion provoked by 
decay of the flooded vegetation. The macrophyte 
cover subsequently declines to lower levels, as oc-
curred at Tucuruí and Balbina (Fearnside 1989, 
2001). Lower oxygen content in a reservoir as 
compared to the running water of the natural river 
is one of the changes that cause populations of 
most of the original fish species to either disap-
pear or be reduced to minimal levels, being re-
placed by a different and less-diverse assembly of 
species (Sá-Oliveira et al. 2015a,b).  

20.2.1.5 Alteration of sediment flows 

Dams reduce sediment flows by retaining sedi-
ments in reservoirs (Fearnside 2013c). Down-
stream, reduced sediment load results in scour-
ing, where erosion of the riverbanks and bottom 
accelerates (Santos et al. 2020). Reduction in sedi-
ment flow deprives the downstream river of the 
nutrients associated with sediment particles. In 
the Madeira River, sediment transport down-
stream of the Santo Antônio and Jirau Dams de-
creased by 20% compared to pre-dam quantities 
(Latrubesse et al. 2017), which may have contrib-
uted to the observed sharp decline in fish catches 
downstream of the dams (Lima et al. 2017; Santos 
et al. 2020). Because suspended particulate or-
ganic matter and aquatic macrophytes are the 
base of the food chain of the lower Amazon 
(Arantes et al. 2019c), reduction of sediment loads 
by Andean dams are likely to have far-reaching 
consequences for aquatic food webs by reducing 
nutrient supplies and thereby affecting primary 
production (Forsberg et al. 2017). Along with re-
duced oxygen, reduced nutrient flows may have 
contributed to the collapse of fish and freshwater 
shrimp populations below the Tucuruí Dam 
(Odinetz Collart 1987), an impact these popula-
tions have never recovered from (Cintra 2009).  
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Reducing sediment flows also impacts aquatic bi-
ota by modifying river geomorphology. Andean 
tributaries provide over 90% of the sediment 
budget of lowland rivers in the Amazon Basin (Fil-
izola and Guyot 2009), playing critical roles in ge-
omorphological processes such as river meander-
ing and floodplain formation (Dunne et al. 1998; 
Meade 2007; McClain and Naiman 2008; Constan-
tine et al. 2014). Interfering with these processes 
disrupts the lateral connectivity between river 
channels and floodplains and ultimately reduces 
fish yields (Forsberg et al. 2017; Almeida et al. 
2020). The fishes’ seasonal use of floodplains has 
essential nursery and feeding roles (Bayley 1995; 
Nilsson and Berggren 2000; Castello et al. 2015; 
Hurd et al. 2016; Bayley et al. 2018). 

Impacts from reduction of sediment flows are es-
pecially problematic in white-water rivers. In 
some cases, the process of dam construction can 
have the opposite effect of temporarily increasing 
sediment loads in clear-water and black-water 
rivers, which is also damaging. In either case, 
dam-induced downstream modifications affect 
fishes’ longitudinal upriver spawning migrations 
(Agostinho et al. 2004, 2008; Lytle and Poff 2004; 
Bailly et al. 2008). These migrations are affected by 
modifying the physical and chemical cues to 
which fish have adapted (Freitas et al. 2012; McIn-
tyre et al. 2016; Timpe and Kaplan 2017). This im-
pact is in addition to the catastrophic effect of 
physical blockage of migration routes by dams. 

20.2.1.6 Alteration of streamflow 

Storage dams can cause downstream flow 
changes over longer periods than run-of-river 
dams, but the large variation in daily or hourly 
time scales for run-of-river dams can also provoke 
significant changes in streamflows (Almeida et al. 
2020). Alteration of flow patterns in the river be-
low a dam has multiple effects on downstream 
ecosystems. Timpe and Kaplan (2017) related eco-
logical impacts to hydrological measures within 
four groups of hydrological parameters: 1) fre-
quency and 2) duration of high and low pulses 

(flood pulses), and 3) the rate and 4) the frequency 
of water condition (level) changes. Other impacts 
on streamflow occur when the reservoir is filling, 
such that downstream river stretches dry out dur-
ing all or part of the filling period. The Balbina 
Dam was an extreme case, with flow stopped for 
over a year (Fearnside 1989). The Belo Monte Dam 
produces a similar effect that is permanent and on 
a grand scale; water flow is greatly reduced in a 
130-km stretch known as the “big bend of the 
Xingu River” (Volta Grande do Rio Xingu), with 80% 
of the river’s annual flow diverted (Figure 20.5).  

Modifications in the hydrological regime directly 
impact aquatic biodiversity. Fish behavior, espe-
cially as related to migration and reproduction, is 
attuned to flow changes, and false signals caused 
by dams can induce fish to behave in ways that 
jeopardize their reproductive success (Agostinho 
et al. 2004; Bailly et al. 2008; Freitas et al. 2012; 
Vasconcelos et al. 2014; Nunes et al. 2015; McIn-
tyre et al. 2016). Reduction in water flow also neg-
atively affects ornamental species, such as the 
zebra pleco (Hypancistrus zebra), which is threa-
tened with extinction in the wild due to the Belo 
Monte Dam (Gonçalves 2011). In addition, altera-
tion of flow and of river stages (height of the water 
level) can also affect turtle reproduction on river 
beaches, as is reported by Indigenous people for 
beaches below the Teles Pires and São Manoel 
Dams in the Tapajós Basin.  

Flooded forests are impacted by the construction 
of mega-dams by increasing tree mortality due to 
extreme flooding (Resende et al. 2019; Oliveira et 
al. 2021). In the Uatumã River below Brazil’s Bal-
bina Dam, streamflow alterations resulted in the 
death of 12% of the swamp (igapó) forest along a 
125-km stretch of river below the dam (Assahira et 
al. 2017; Schöngart et al. 2021). During years with 
high rainfall the water level no longer reaches the 
minimum of the natural river, leaving trees in low 
topographic positions underwater beyond their 
tolerance limits (Figure 20.6).  
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Figure 20.5 The Belo Monte hydroelectric project has diverted water from the “Volta Grande” (big bend) of the Xingu River, a 130-
km stretch between the two dams that comprise the project. Source: Watts (2019). Photograph: Fábio Erdos/The Guardian. 

Figure 20.6 Igapó (black-water swamp forest) killed by alteration of water levels downstream of the Balbina Dam. Photo: Jochen 
Schöngart, INPA. 
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20.3 Roads 

Amazonian roads are often built without adequate 
passages for water, such as culverts or bridges, 
which results in the fragmentation of small tribu-
taries and seasonal streams. Roads can act as 
dams, and their impact is especially strong for 
seasonal streams, with roads causing ponding 
along the road, blocking the passage of aquatic life 
and disrupting stream connectivity. On Brazil’s 
BR-319 (Manaus-Porto Velho) highway such 
blockages impede the seasonal migration of 
stream fishes (Stegmann et al. 2019). Roads also 
influence water quality and sediment deposition 
in aquatic systems. A study of 82 of the 242 points 
at which watercourses intersect BR-319 showed 
higher water turbidity downstream, as compared 
to upstream, of the road crossings (Maia 2012). A 
road without accompanying deforestation in Bra-
zil’s state of Amazonas resulted in sediment from 
erosion of the roadbed and from dust raised by 
truck traffic that had notable effects on the com-
munity of aquatic insects in nearby streams, re-
ducing richness and density in all functional 
groups, especially shredder species (Couceiro et 
al. 2011). One factor contributing to this is the bur-
ial of fallen leaves under the sediments, making 
these unavailable to insects in the shredder func-
tional group (Couceiro et al. 2011). This reduces an 
important input to the base of the trophic pyramid 
in the aquatic ecosystem. 
 
20.4 Navigational waterways and river diver-
sions 

Navigational waterways (Figure 20.7) have severe 
impacts on aquatic ecosystems. One is the dyna-
miting and removal of rocky habitats in order to 
allow barges to pass unimpeded. Many species of 
fish are endemic to these habitats and could go ex-
tinct when they are removed (e.g., (Zuanon 2015). 
The planned removal of the extensive rock out-
crops of the Pedral do Lourenço upstream from 
Marabá on the Tocantins River in the Brazilian 
Amazon would have these effects on a large scale 
(Higgins 2020).  

In addition to removing rock outcrops, dredging of 
river channels to ensure yearlong navigability re-
sults in deepening shallow zones and removing 
woody debris (Castello et al. 2013a) that can hold 
rich, endemic fish fauna (Hrbek et al. 2018). Popu-
lations of these species are unlikely to recover 
once their specific habitat has been removed. In 
the Peruvian Amazon a project has recently been 
contracted for implanting the roughly 2,700-km 
Hidrovía Amazónica (Anderson et al. 2018; Bod-
mer et al. 2018). Recent field data on fluvial sedi-
ment movements and fish biodiversity in the Ma-
rañon and Ucayali Rivers in the Peruvian Amazon 
suggest that the Hidrovía Amazónica project 
could significantly alter river-channel morphol-
ogy and consequently impact fish diversity and 
productivity on which local economies depend. 
Measurements of sediment transport in these riv-
ers have shown that the filling time of the riverbed 
is very fast, with an average transport of 1.3 mil-
lion tons of total sediments per day (Centro de In-
vestigación y Tecnologia del Agua CITA 2019). 
Among the most critical impacts that the Hidrovía 
Amazónica would cause to the Peruvian Amazon’s 
fish biodiversity, habitats, and fishery resources 
are (i) contamination of rivers due to fuel and oil 
spills from dredging vessels, (ii) disturbance of lo-
cal and regional fish migrations, (iii) impact on 
fish spawning and refuge habitats, (iv) impact on 
the abundance of fish populations, (iv) mortality of 
fish eggs, larvae, and juveniles, (v) disturbance of 
the natural floods along the river banks, and (vi) 
impacts on fish productivity (García-Villacorta 
2019). Other potential consequences are the deg-
radation or destruction of breeding and feeding 
grounds, particularly for detritivorous species. 

20.5 Overharvesting  

20.5.1 Aquatic fauna harvested for human con-
sumption 

The unsustainable exploitation of plant and ani-
mal species has long been a significant factor in 
degrading aquatic ecosystems in the Amazon Ba-
sin (Castello et al. 2013a, Chapter 15). Most large,  
high-valued fish species, such as the giant pira- 
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Figure 20.7 Existing and planned waterways across the Amazon biome. Sources: Fearnside 2002b, 2014a; Mariac et al. 2021 
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rucu or paiche (Arapaima spp.), which is already 
on the CITES II list of endangered species (Castello 
and Stewart 2010; Castello et al. 2015), the large 
fruit-eating tambaqui or gamitana, Colossoma 
macropomum (Isaac and Ruffino 1996; Campos et 
al. 2015), and many of the largest catfishes (e.g., 
Isaac et al. 1998; Ruffino and Isaac 1999; Petrere et 
al. 2004; Alonso and Pirker 2005; Córdoba et al. 
2013) are considered overfished in their natural 
distribution areas. In several places, local man-
agement programs are in place and fisheries are 
under systematic control, as is the case with par-
ticipatory management of Arapaima fishing in the 
Mamiraruá Sustainable Development Reserve in 
Brazil (IDSM 2021) and the Pacaya-Samiria Na-
tional Reserve in Peru (Kirkland et al. 2020). 

Overfishing is no longer restricted to large, highly 
sought species, it also affects several of the small-
er Characiformes species that now dominate fish 
landings, such as Prochilodus nigricans (Catarino et 
al. 2014; Bonilla-Castillo et al. 2018) Psectrogaster 
spp. (García-Vásquez et al. 2015), Triportheus sp, 
Osteoglossum bicirrhosum, and Mylossoma duriventre 
(Fabré et al. 2017). This is particularly visible 
around large cities, such as Manaus and Iquitos, 
which can cast defaunation shadows of over a 
thousand kilometers, as evidenced for tambaqui 
(Tregidgo et al. 2017; Garcia et al. 2009). The pro-
gressive replacement in fisheries of large, long-
lived species by smaller species with faster turno-
ver is a well-described phenomenon known as 
“fishing down” (Welcomme 1995, 1999), or “fish-
ing down the food web” when an associated de-
cline in trophic levels is observed in the exploited 
species (Pauly et al. 1998).  

Most commercial and overexploited fish species 
in the Amazon Basin are migratory, traveling from 
a few hundred to several thousand kilometers 
(Barthem and Goulding 2007; Goulding et al. 
2019). Migratory species account for over 90% of 
fisheries landings in the Amazon Basin, generat-
ing incomes of over US $400 million (Duponchelle 
et al. 2021). Although the proportion of migratory 
species is slightly lower in unmonitored subsist-
ence fisheries, which represent at least as much 

volume as the landed commercial fisheries (Bay-
ley 1998; Crampton et al. 2004), they still dominate 
the catches (Batista et al. 1998; Castello et al. 2011; 
Castello et al. 2013b). Migratory fishes are the spe-
cies most at risk from the growing anthropogenic 
activities threatening the Amazon’s aquatic eco-
systems (review in Duponchelle et al. 2021). 

Fish overharvesting could have indirect negative 
effects on terrestrial plant biodiversity and con-
servation because many commercial species have 
frugivorous diets and play key roles in dispersing 
seeds (ichthyochory) and in seed germination 
processes (review in Correa et al. 2015a). This is 
further aggravated by the fact that larger fish, 
which are the main targets for fisheries, are also 
the most effective seed-dispersal agents (Correa et 
al. 2015a,b; Chapters 3 and 4). 

Modern aquaculture could contribute to the con-
servation of endangered species, which are over-
harvested. Most of the aquaculture farms around 
major Amazon cities have only recently begun op-
eration and focus on much-consumed species. 
Tambaqui is the native fish species most fre-
quently farmed in Brazil (Araújo-Lima and Gould-
ing 1998; de Oliveira and Val 2017). Pirarucu (Ara-
paima) and some other fish species, such as 
matrinchã (Brycon amazonicus), are also farmed. 
The major challenge to fish farming in the Ama-
zon is feeding because local production of fish 
feed is limited. Other inputs, such as ice and rock 
salt, can also be difficult to obtain. The improve-
ment of transportation and other conditions 
would also contribute to the use of by-products 
(such as leather) from these fish species. Other 
aquatic groups, such as turtles, are illegally har-
vested for sale as food (Salisbury 2016). Dolphins 
are under severe pressure from the practice of 
killing them to use their flesh as fish bait, espe-
cially for the piragatinga or mota catfish (Callo-
physius macropterus), and caimans are also killed 
for this purpose (Brum et al. 2015). 
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20.5.2 Ornamental fish 

The aquarium trade is a growing, multi-billion-
dollar industry (Andrews 1990; Stevens et al. 
2017). Fish are among the most popular pets in the 
world (Olivier 2001), and the harvesting of wild 
specimens for the international ornamental trade 
is a major conservation issue (Andrews 1990; 
Chao and Prang 1997; Moreau and Coomes 2007) 
The Amazon Basin accounts for ~10% of the global 
trade of freshwater ornamental fish, with Brazil, 
Colombia, and Peru as the major exporters; in 
2007, the total declared (greatly underestimated) 
export value from these three countries was 
around US $17 million (Monticini 2010). Although 
artificial breeding could be beneficial for the con-
servation of aquarium species (King 2019), nearly 
all specimens exported from South America are 
taken directly from the wild (Olivier 2001). There 
is no up-to-date published estimate of the overall 
number of Amazonian fish species exploited by 
the ornamental trade, but about 700 species are 
exported from Brazil (IBAMA 2012), >100 from Co-
lombia (Ortega Lara et al. 2015) and >300 from 
Peru (Gerstner et al. 2006). These lists share many 
species, but widespread species may also hold 
cryptic diversity (e.g., Estivals et al. 2020). These 
figures are probably underestimates, as many dif-
ferent species can be exported under a single 
name (Moreau and Coomes 2007). Therefore, a 
conservative estimate could consider that be-
tween 700 and 1,000 species of fish are exploited 
by the ornamental trade in the Amazon Basin.  

One major impact of the ornamental trade is that 
it favors invasion of exotic species and their asso-
ciated parasites (Chan et al. 2019; Gippet and Ber-
telsmeier 2021). The effects of the ornamental 
trade on natural fish populations in the Amazon, 
however, remain poorly studied. Anecdotal infor-
mation suggests population collapses or declines 
under exploitation pressure at some locations in 
the Rio Negro for discus (Symphysodon discus) 
(Crampton 1999) and cardinal tetra (Paracheirodon 
axelrodi) (Andrews 1990; Chao and Prada-
Pedreros 1995). In the Peruvian Amazon, exploi-
tation for the ornamental trade has led to reduc-

tions in ornamental species at study locations by 
over 50% in fish abundance, diversity, and bio-
mass (Gerstner et al. 2006). 

The cardinal tetra is the number-one export spe-
cies in the ornamental fish trade in Brazil, ac-
counting for 68% of the total value of Brazilian or-
namental fish exports (Anjos et al. 2018). The car-
dinal tetra inhabits the middle and upper Rio Ne-
gro, and its trade corresponds to 60% of the econ-
omy of the municipality of Barcelos. However, 
fishery data have yet to be collected to better eval-
uate the effects of this artisanal fishery on fish 
populations. Based on information from fishers 
and the data obtained from sampling ornamental 
fish (fish caught per area sampled), the world eco-
nomic collapse that began in 2008 directly af-
fected the gross amount of exported ornamental 
fish (mostly cardinal tetra). 

After the 2008 global financial crisis there was a 
decrease in both the number of people involved in 
exploiting ornamental fish and in the catch vol-
ume. In fact, the decrease in the 2010s, followed 
by another economic crisis, ended the boom in or-
namental fish export from Brazil. Considering by-
catch (other species caught together with the tar-
get species), ornamental fisheries would not be 
sustainable without an observatory group com-
prising the fisher community, dealers, and re-
searchers. The observatory program is viable for 
the ornamental fish market and can increase sales 
by emphasizing fish preservation and the well-be-
ing of the local communities that are still active in 
this trade in a manner similar to what occurred 
with fair-trade coffee (Zehev et al. 2015).  

Owing to the increasing exploitation of ornamen-
tal fish, the silver arowana (Osteoglossum bicirrho-
sum) has been placed on the Red Book list in Co-
lombia (Mojica et al. 2012), and this species may 
also be threatened in Peru (Moreau and Coomes 
2006, 2007). Export of this species for ornamental 
purposes is prohibited in Brazil (Lima and Prang 
2008). 
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20.6 Invasive Species 

The introduction of invasive fish species world-
wide is responsible for the homogenization of 
aquatic fauna, driven especially by a few species, 
such as O. niloticus, C. carpio and P. reticulata (Vil-
léger et al. 2011; Toussaint et al. 2016a,b), all of 
which have been introduced into the Amazon. In-
vasive species are used for farming, cultivation of 
ornamental species, and recreational fishing 
(Lima-Junior et al. 2018). Fish introduced to the 
lakes and reservoirs of the Brazilian Amazon often 
belong to predatory species (Cichla spp., Astronotus 
spp. And Pygocentrus nattereri), contributing to the 
reduction in abundance or loss of native fish spe-
cies, with whole-ecosystem consequences such as 
loss of native species’ habitats, decrease of local 
species due to the many invasive species that eat 
native fish species’ eggs, and competition for food, 
leading to changes in species composition and to 
modifications of food-webs (Zaret and Payne 
1973; Latini and Petrere 2004; Pelicice and 
Agostinho 2009; Pelicice et al. 2015b; Fragoso-
Moura et al. 2016). In Andean watercourses in Bo-
livia and Peru the introduction of the predatory 
rainbow trout Oncorhynchus mykiss resulted in local 
extirpation or greatly reduced abundance of na-
tive Astroblepus spp. (Ortega et al. 2007; Van 
Damme et al. 2011). In the lake Titicaca system, in-
troduced rainbow trout (Oncorhynchus mykiss) and 
pejerrey (Odonthestes bonariensis) resulted in the 
extinction of Orestias cuvieri and in declines in 
many other native species (Anderson and Maldo-
nado-Ocampo 2011; Ortega et al. 2007; Van 
Damme et al. 2009).  

Sport fishing and collection for ornamental and 
aquaculture purposes have motivated the intro-
duction of tilapia (Oreochromis niloticus), guppy 
(Poecilia reticulate), and common carp (Cyprinus 
carpio), but their impacts are still poorly investi-
gated (Ortega et al., 2007; Anderson and Maldo-
nado-Ocampo 2011; Van Damme et al. 2011; 
Gutiérrez et al. 2012; Doria et al. 2020). In 2020, the 
Brazilian government authorized and initiated the 
promotion of raising tilapia in cages in reservoirs 
(Charvet et al. 2021), despite the fact that tilapia 

can affect native species through competition and 
spread of diseases (Deines et al. 2016). If tilapia 
populations become dense, they can release 
enough phosphorus into the water to cause eu-
trophication, which leads to widespread fish mor-
tality, as has already occurred in lakes outside the 
Amazon (Starling et al. 2002).  

The proliferation of hydroelectric dams in the Am-
azon makes the region more vulnerable to inva-
sive species, as dams facilitate invasive fish spe-
cies. For example, specialist species adapted to 
running water progressively disappear from the 
newly created reservoirs upstream of dams and, if 
eurytopic native species (species able to tolerate a 
wide range of ecological conditions) cannot take 
their place, then the niche is often taken by alien 
species (Liew et al. 2016). This is facilitated by po-
tential tilapia entry into reservoirs; in addition to 
the recently legalized rearing of tilapia in cages in 
reservoirs in Brazil, many aquaculture farms are 
installed close to reservoirs and fish may escape 
when water is drained from the ponds.  

The introduction of some Amazonian predatory 
fish species into regions outside their original 
range can have major effects on local fish commu-
nities. This is the case for tucunaré (Cichla spp.) 
and pirarucu or paiche (Arapaima spp.) (Miranda-
Chumacero et al. 2012). A recent review revealed 
1,314 records of non-native fish species (in 9 or-
ders and 17 families), in the Amazon Basin since 
the first record in 1939, with a sharp increase in 
the last 20 years (75% of occurrences) (Doria et al. 
2021). Non-native species were mainly intro-
duced by the ornamental trade, or for aquaculture 
and sport-fishing. The most widespread non-na-
tive species were Arapaima gigas (outside of its na-
tive range), Poecilia reticulata, and Oreochromis ni-
loticus. Overall, our current understanding of im-
pacts of invasive fish species in the Amazon re-
mains limited due to a paucity of studies (Frehse 
et al. 2016; Doria et al. 2021). 
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20.7 Deforestation 

Deforestation is a driver of aquatic degradation 
that can have effects that differ between the di-
rectly impacted areas and areas downstream; lo-
cal deforestation can have regional consequences. 
At the small to medium scale, deforestation usu-
ally results in increased runoff and discharge; for 
example, deforestation resulted in a 25% increase 
in discharge in large river systems such as the To-
cantins and Araguaia Rivers, with little change in 
precipitation (Coe et al. 2009). At a larger scale, at-
mospheric feedbacks (reduced precipitation 
caused by decreased evapotranspiration) can 
change the water balance, not only in the basins 
where deforestation has occurred but throughout 
the entire Amazon via atmospheric circulation 
(Coe et al. 2009). 

By increasing water runoff and sediment loads 
carried by the rivers, deforestation typically alters 
geomorphological and biochemical processes 
downstream with consequences for soil erosion 
and the biological productivity of aquatic ecosys-
tems (Neill et al. 2001; Coe et al. 2009; Deegan et al. 
2011; Iñiguez-Armijos et al. 2014; Ilha et al. 2018). 
For example, stronger floods result in the washing 
out of substrate and associated production of the 
benthos on which migratory detritivores feed 
(Flecker 1996). Decreased water transparency re-
duces algal and zooplankton production in flood-
plain lakes, which are important feeding and 
nursery areas for most fish species (Bayley 1995; 
Pringle et al. 2000). 

The chemical properties of streams flowing 
through pastures are radically different from 
those of streams in neighboring forests (Krusche 
et al. 2005; Neill et al. 2006; Deegan et al. 2011). So-
lutes in groundwater are also affected, thereby 
contributing to changes in stream chemistry (Wil-
liams et al. 1997). Direct exposure to sun and 
changes in temperature, oxygen, chemical con-
tent, and bottom substrates greatly affect aquatic 
fauna (da-Silva Monteiro Júnior et al. 2013). In-
creased water temperatures and reduced oxy-

genation  during  the  dry  period  can  be  lethal  to  
fish (Winemiller et al. 1996).  

Cardinal tetras are sensitive to increased temper-
atures (Fé-Gonçalves et al. 2018). The two conge-
neric species of cardinal tetras are distributed in 
inter-fluvial areas in the upper part of the Rio Ne-
gro Basin and inhabit two distinct environments 
with different vegetation covers and temperatures 
(Marshall et al. 2011). The water temperatures of 
these environments differ by less than 2°C but co-
incide with the maximum thermal limits for both 
species (Campos et al. 2017). Small characins are 
usually found in small, forested terra firme (up-
land) streams. The increase in water temperature 
caused by deforestation will therefore affect fish 
species living in streams in deforested areas. 
Overall, severe disturbances in fish communities 
can result because many species live in streams 
with temperatures close to their critical tolerance 
limits (Campos et al. 2018). 

In small streams, deforestation reduces the avail-
ability of large instream wood, which plays critical 
roles in the structure, diversity, and abundance of 
fish communities, thus impacting fisheries and 
ecosystem functions (Wright and Flecker 2004). 
Loss of smaller debris could impact the benthic 
insects and macroinvertebrates that fish eat. Re-
cent studies have demonstrated negative impacts 
of deforestation on fishery yield (Castello et al. 
2018) and fish species richness, taxonomic diver-
sity, abundance (Lobón-Cerviá et al. 2015; Arantes 
et al. 2018), biomass, and functional diversity 
(Arantes et al. 2019a). All these impacts can be re-
duced if riparian forests are maintained; for ex-
ample, if an area is converted to pasture but a for-
ested strip is left along the margins of waterbod-
ies, these waterbodies will be less affected (de 
Paula et al. 2021). The wider the strip, the less the 
impact on aquatic ecosystems; for example, in the 
eastern Amazon the percentage of forest cover 
within 100 m of a stream is closely related to ma-
croinvertebrate diversity in the stream (de Paula 
et al. 2021). Even a small fraction of forest loss in a 
catchment is sufficient to transform communities 
of benthic invertebrates and vertebrates (mainly 
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fish) in Amazonian streams (Brito et al. 2020; Cam-
pos et al. 2018). Reducing forest cover by only 6.5% 
within 50 m of a stream is enough to cross thresh-
olds for aquatic invertebrates (Dala'corte et al. 
2020). Furthermore, a forest border protects 
stream banks from erosion, prevents destruction 
of the stream bed, maintains cooler temperatures, 
and helps maintain better water quality. In Brazil, 
the legal requirement for such protection has 
been greatly reduced since 2012, when the coun-
try’s Forest Code was replaced by a law that rede-
fines the water level from which the required for-
est border is measured, changing the basis for 
measurement from the maximum to the mini-
mum level of the river. This eliminated almost all 
requirements for protection along most medium 
and large Amazonian rivers due to their great an-
nual variation in water level. 

20.8 Pollution 

20.8.1 Agricultural chemicals 

Expansion of chemical-intensive crops such as 
soybeans and oil palm increases the risk of water 
contamination from agricultural chemicals. The 
expansion of soybean production in the southern 
Amazon is of particular concern due to the heavy 
use of herbicides, including glyphosate (e.g., 
Roundup©). There are few direct measurements 
of Amazonian watercourses. A 2016 review on 
pesticides in Brazilian freshwaters found no stud-
ies in the country’s Amazon biome (Albuquerque 
et al. 2016). A 2020 study in the area near Santa-
rém, where soybeans are expanding, sampled wa-
tercourses and/or groundwater at 28 sites, detect-
ing glyphosate at 11 sites at levels between 1.5 and 
9.7 µg/L (Pires et al. 2020). The presence of pesti-
cides in aquatic animals indicates water contami-
nation, as in the case of organochlorine pesticides 
in fish in the Tapajós River (Mendes et al. 2016), 
turtles in the Xingu River (Pignati et al. 2018), and 
Amazon River dolphins in the Solimões (Upper 
Amazon) and Madeira Rivers (Lailson-Brito Jr. et 
al. 2008). The same dolphins also had polychlor-
inated biphenyls in their blubber (Lailson-Brito Jr. 
et al. 2008; Torres et al. 2009). 

In Brazil, several hundred agricultural chemicals 
have been newly authorized for use under the cur-
rent administration, many of which are banned in 
other countries (Ferrante and Fearnside 2019). 
Pesticides, herbicides, and medicines and other 
drugs (including endocrine disrupters) are re-
leased into the environment. For many com-
pounds, the period of time they remain in the en-
vironment is still undetermined. Transition met-
als and other pollutants in Amazonian aquatic 
communities may affect local fish species differ-
entially due to their respiration, reproduction, 
trophic position, and metabolic characteristics, 
which vary among different fish assemblages (Du-
arte et al. 2009; Braz-Mota et al. 2017). In Venezue-
lan streams, for example, particulate or dissolved 
compounds coming from agricultural effluents 
resulted in strong water de-oxygenation through 
micro-organismal decomposition and, subse-
quently, in the loss of fish species (Winemiller et 
al. 1996). By killing mostly adult fish, these rela-
tively localized effects have potentially long-term 
consequences (Braz-Mota et al. 2017). The herbi-
cide glyphosate and the pesticide Malathion have 
been shown to cause metabolic and cellular dam-
age in fish exposed to concentrations lower than 
their 50% lethal concentrations (LC50) (Silva et al. 
2019; Souza et al. 2020).  

Laboratory experiments on fish have shown that 
glyphosate and other herbicides cause damage to 
the liver and gills, as well as DNA breakage and in-
creased expression of oncogenes (Braz-Mota et al. 
2015; Silva et al. 2019; Souza et al. 2020). Field ob-
servations on frogs monitored before and after 
these herbicides were applied in an area in the 
central Amazon revealed that two species (Scinax 
ruber and Rhinella marina) developed malfor-
mations that were not present before the herbi-
cide application or at a location 600 m from the 
application site. In addition, three previously 
abundant Leptodactylus species became locally ex-
tinct (Ferrante and Fearnside 2020).  
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20.9 Oil spills and toxic waste 

The western part of the Amazon Basin has large oil 
reserves (Chapter 19). Crude oil spills and un-
treated toxic waste from oil and gas exploitation 
are notorious in the Amazon portions of Ecuador 
(Jochnick et al. 1994) and Peru (Kimerling 2006; 
Orta Martínez et al. 2007; Yusta-García et al. 2017) 
(Figure 20.8). In the Ecuadorian Amazon between 
1972 and 1992, 73 billion liters of crude oil was 
discharged into the environment, 1.8 times the 41 
billion liters released by the Exxon Valdez disaster 
in Alaska (Sebastián and Hurtig 2004; Kimerling 
2006). Over this period, 43 billion liters of pro-
duced water (oilfield brine) was also released, 
which contains salts that disrupt fish migrations 
(Kimerling 2006). 

Oil is toxic to fish (Sadauskas-Henrique et al. 
2016), and oil-associated contamination can have 
far-reaching impacts on Amazonian aquatic com-
munities because the oil can disperse over the en-
tire downstream network (Yusta-García et al. 
2017). Oil extraction produces large amounts of 
toxic mud and produced water, which in Peru and 
Ecuador have been routinely released into the en-
vironment rather than being pumped back into 
wells (Kimerling 2006, pp. 450-453; Moquet et al.  
2014). This brine has both high salt concentra-
tions and a variety of toxic substances (including 
heavy metals), in addition to significant amounts 
of oil. Concentrations of hydrocarbon-related tox-
ins have been found in Ecuadorian streams up to 
500 times higher than those allowed by regula-
tions in Europe (Sebastián and Hurtig 2004).  

Figure 20.8 Oil leaks from a submerged pipeline in Peru. Source: Fraser (2014). 
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The effects of oil can last for decades, as seen fol-
lowing a spill of 11 billion liters of crude into the 
Coca and Napo Rivers in Ecuador in 1987; as of 
2006, the affected rivers had not recovered their 
fish biodiversity (Kimerling 2006, p. 458). Oil 
spills also greatly impact aquatic invertebrate 
communities, reducing both abundance and spe-
cies richness, as shown by studies in streams and 
floodplains affected by oil near Manaus, Brazil 
(Couceiro et al. 2006, 2007a).  

Extraction of oil and natural gas near the Urucu 
River, in the western part of the Brazilian Amazon, 
is a concern due to potential impacts on adjacent 
waterbodies. Although the oil company responsi-
ble (Petrobras) ensures that all safety operation 
protocols are being observed, there is always the 
possibility of an oil spill. Oil pumped from the 
Urucu wells travels in large barges down the Soli-
mões (Upper Amazon) River from Coarí to Ma-
naus, where it is refined (Figure 20.9).

Figure 20.9 Transport of oil by pipeline from Urucu (RUC) to Coarí and then by barge from Coarí to Manaus. The inset map shows oil 
project areas throughout the Amazon. 
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Amazon fishes have evolved in hypoxic water and 
have developed many strategies to either breathe 
air or take water from the film at the top of the wa-
ter column, which is richer in oxygen (Val et al. 
1998; Soares et al. 2006). As mentioned above, 
these strategies threaten air-breathing fish if oil 
spills occur (Val and Almeida-Val 1999). 

Brazil’s proposal for the Solimões Sedimentary 
Basin oil and gas project is rapidly moving for-
ward and will open a vast “strategic influence 
area” covering 47 million hectares (larger than the 
US state of California) to exploitation in the west-
ern Brazilian Amazon (Fearnside 2020b) (Figure 
20.10). Within this area, wells would be located at 
the most-promising locations (green lines in Fig-
ure 20.10) where seismic surveys have already 
been completed. Rights to the first drilling blocks 

have already been sold to Rosneft, a Russian com-
pany that Greenpeace-Russia accuses of causing 
over 10,000 oil spills throughout the world (Fearn-
side 2020c). This oil and gas project also carries a 
substantial risk of improving road access to the 
vast “trans-Purus” region between the Purus 
River and Brazil’s border with Peru, resulting in 
deforestation of the last great block of intact forest 
in the Brazilian Amazon (Fearnside et al. 2020; see 
also the views of Brazil’s Ministry of Mines and En-
ergy in Brazil EPE 2020a,b; Fearnside 2020b,c; 
Vieira 2020a,b). 

20.10 Mining 

Gold mining, much of which is illegal, is wide-
spread in the Amazon Basin (Figure 20.11). In Bra-
zil it occurs in rivers such as the Tapajós, 

Figure 20.10 Brazil’s proposed “Solimões Sedimentary Basin” oil and gas project. The purple areas are the Urucu production field 
where wells are currently in production. The thin green lines represent locations for future drilling where seismic surveys have 
already been carried out. The proposed project’s “Strategic Influence Area,” delimited by the red line, covers 47 million hectares 
(larger than the US state of California). Source: Brazil, EPE (2020a, p. 65). 
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Tocantins, Madeira, Xingu, Negro, Amapari, and 
Solimões or Upper Amazon (Figure 20.12; Roulet 
et al. 1999; dos Santos et al. 2000); in Bolivia in the 
Madeira, Beni, and Iténez Rivers (Pouilly et al. 
2013); in Colombia in the Putumayo, Caquetá, 
Guanía, Vaupés, and Inirída Rivers (Nuñez-
Avellaneda et al. 2014); in Ecuador in the Nambija 
River, and in French Guiana along the tributaries 
of the Black River (Barbosa and Dorea 1998). Ille-
gal invasion of Indigenous areas in Brazil by gold 
miners (garimpeiros) has long been a major impact 
on these areas (Figure 20.13), including their 
aquatic ecosystems. A bill that would legalize 
these and other activities in Indigenous areas has 
the potential to greatly increase these impacts 
(Branford and Torres 2019; Villén-Pérez et al. 
2020; Ferrante and Fearnside 2021). It is esti-
mated that more than 200,000 tons of mercury 
have been shed by gold mining in the Brazilian 
Amazon since the late 19th Century (Bahía-Oliveira 
et al. 2004).  

Gold mining is estimated to account for 64% of the 
mercury entering Amazonian aquatic systems 
(Roulet et al. 1999, 2000; Artaxo et al. 2000; 
Guimaraes et al. 2000). The remaining amount 
comes from runoff from natural deposits that are 
eroded by deforestation (33%) and atmospheric 
emissions resulting from deforestation and forest 
fires (3%) (Roulet et al. 1999; Souza-Araújo et al. 
2016). On the basin scale, the dynamics of mer-
cury involve abiotic physical processes (i.e., 
downstream transport of sediments). Elemental 
mercury can then be turned into toxic methylmer-
cury by specific bacteria in anoxic environments, 
such as those created at the bottom of reservoirs 
(Section 20.2.1.4) or in thermally stratified natural 
lakes and rivers.  

Methylmercury enters aquatic food webs and bio-
accumulates in successively higher trophic levels 
(Morel et al. 1998; Ullrich et al. 2001). Vertebrate 
populations that have accumulated mercury mi-
grate upstream, including both fish migrations for 
spawning and side migrations in the floodplains 
(Molina et al. 2010; Nuñez-Avellaneda et al. 2014; 
Mosquera-Guerra et al. 2019). High concentra-

tions of total mercury (Hg) and methylmercury 
(MeHg) in aquatic trophic networks have been 
documented since the 1980s (Martinelli et al. 
1988; Lacerda 1997; Lacerda and Salomons 1998). 

soil independent of human activities; since Ama-
zonian soils are ancient, they have slowly accu-
mulated mercury that is injected into the atmos-
phere by volcanic eruptions and deposited by pre-
cipitation worldwide. Fish consumption by the 
Amazon’s human communities causes some of 
the world’s highest recorded mercury levels in hu-
man hair, along with associated health issues 
(Passos and Mergler 2008). Through fish con-
sumption, humans also bioaccumulate mercury 
(Chapter 21). 

Among endangered species, high concentrations 
of mercury have been reported in the giant otter 
(Pteronura brasiliensis) in Brazil (Dias Fonseca et al. 
2005); in the Amazon River dolphin (Inia geoffren-
sis) in Colombia, Brazil, and Bolivia (Rosas and Le-
thi 1996; Mosquera-Guerra et al. 2015, 2019); and 
in the gray river dolphin (Sotalia fluviatilis) in Brazil 
(Mosquera-Guerra et al. 2019). Along the coast of 
the Amazon, mercury was also found in tissues of 
the coastal dolphin (S. guianensis) (de Moura et al. 
2012). Effects of mercury on small cetaceans in-
clude liver abnormalities and serious disorders in 
the kidney and brain (Augier et al. 1993). Else-
where, the combination of mercury with other 
pollutants in small cetaceans resulted in sensory 
deficits, behavioral deficiency, anorexia, lethargy, 
reproductive disorders and death of fetuses, as 
well as deficiencies in the immune system that fa-
cilitate the appearance of pneumonia and other 
infectious diseases (Cardellicchio et al. 2002). It 
remains unknown whether the same impacts are 
occurring in Amazon River dolphins and marine 
dolphins. 

Preparations for large-scale industrial mining op-
erations are rapidly moving forward (Arsenault 
2021). The Canadian mining company Belo-Sun is 
preparing a massive operation just downstream of 
the Pimental Dam (part of the Belo Monte complex 
on the Xingu River). The operation would extract  
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Figure 20.11. Official mining concessions and illegal activities. 
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Figure 20.12 Sediment from gold mining enters the Tapajos River at its confluence with the Crepuri, one of several tributaries in 
central Pará discharging sediments from gold mining into the Tapajós. Source: Guimarães (2020). Photograph: Jean R.D. Guimarães. 

Figure 20.13 Mining in Yanomami Indigenous Territory in 2020. Source: Chico Batata - Greenpeace). 
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gold from two open-pit mines beside the Volta 
Grande (Big Bend) stretch of the river that is al-
ready heavily impacted by reduced water flow due 
to the Belo Monte complex. Risks include tailings 
dams, cyanide use, and demand for large amounts 
water from the already insufficient flow of the 
Volta Grande (Emerman 2020). The 44 m high tail-
ings dam will remain indefinitely, although the 
mine is estimated to be exhausted after 17 years 
of operation. Were the tailings dame to rupture, it 
could provoke a catastrophe equal to the 2015 
Mariana disaster on the Rio Doce in Minas Gerais 
(Tófoli et al. 2017), and release over 35 million m3 
of tailings containing cyanide (Emerman 2020). 

Bauxite mining and the processing of ore to pro-
duce alumina and then aluminum can release fine 
toxic particles known as “red mud” into aquatic 
ecosystems. At the Mineração Rio do Norte baux-
ite mine on the Trombetas River in Pará, a large 
lake (the Lago Batata) was completely filled with 
24 million tons of this mud in the 1980s, killing 
virtually all aquatic life (Soares 2015; Borges and 
Branford 2020). In 2018, a holding pond for red 
mud burst at the Norsk Hydro alumina plant in 
Barcarena, Pará (Fearnside 2019). Water was con-
taminated as far away as Abaetetuba, 48 km from 
the alumina plant (Barbosa 2018).  

20.11 Urban sewage and plastic waste 

Urban sewage greatly affects aquatic inverte-
brates, reducing both abundance and species 
richness, as shown by a series of studies in 20 
streams in the Manaus area (Couceiro et al. 2006, 
2007a,b, 2011; Martins et al. 2017). The effect var-
ies by taxonomic group, which allowed an index of 
pollution severity to be developed using aquatic 
insects as bioindicators (Couceiro et al. 2012). 
Streams in Manaus are also contaminated with a 
variety of hydrocarbons both from biomass burn-
ing and petroleum (de Melo et al. 2020).  

Streams in Manaus have been found to contain 
human pharmaceuticals, as well as traces of co-
caine, but these are diluted below detection limits 
after entering the major rivers (Thomas et al. 
2014; de Melo et al. 2019). Pollution with pharma-
ceutical compounds can affect fish (dos Santos et 
al. 2020) and macrophytes (Otomo et al. 2021). 
Pharmaceutical pollution is a growing threat to 
aquatic environments throughout Latin America, 
including Amazonian countries (Valdez-Carrillo et 
al. 2020). Samples taken at 40 sites along the Am-
azon River and major tributaries in Brazil found 
30-40 compounds near major cities and 1-7 com-
pounds in the Amazon River far from cities (Fa-
bregat-Safont et al. 2021). A different survey at 40 
sampling sites along the Amazon River, three trib-
utaries (Negro, Tapajós and Tocantins Rivers), 

Figure 20.14 Bioaccumulation of mercury in the Rio Negro. Adapted from Kasper (2018). 



Chapter 20: Drivers and Impacts of Changes in Aquatic Ecosystems 

Science Panel for the Amazon 29 

and four cities found that chemical pollution can 
cause long-term effects in 50–80% of aquatic spe-
cies near urban areas (Rico et al. 2021).  

Large amounts of plastic are discarded in Amazo-
nian rivers and streams (Figure 20.15), and the 
presence of microplastics has now been detected 
in river sediments (Gerolin et al. 2020), in the sand 
of a beach on the coast of the Amazon region, and 
in a river beach in the Ecuadorian Amazon (Lucas-
Solis et al. 2021; Martinelli Filho and Monteiro 
2019). Microplastics have also been found in fish 
species from all trophic levels, including 13 spe-
cies from the Xingu River (Andrade et al. 2019) and 
14 from the Amazon estuary (Pegado et al. 2018). 
Micro- and nanoplastics have impacts on aquatic 
ecosystems, including serving as carriers for per-
sistent organic pollutants (POPs) (Besseling et al. 
2019) and transferring chemicals that can pro-
voke hepatic stress in fish (Rochman et al. 2013). 
They can also affect mammals (Rubio et al. 2020).  

Many cities, towns, and municipalities across the 
basin do not have plastic and waste management 
in place, and this remains as an important chal-
lenge to be tackled by policy makers for the con-
servation of healthy freshwater ecosystems in the 
region. The Amazon River is estimated to dis-
charge 32,000-64,000 tons of plastic into the At-
lantic Ocean annually (Lebreton et al. 2017). The 
Amazon River has also been identified as a major 
source of organic plastic additives in the water of 
the tropical North Atlantic (Schmidt et al. 2019). 

20.12 Interactions among drivers 

Although most drivers of degradation in aquatic 
ecosystems have been discussed separately, sev-
eral are highly correlated, often interacting, and 
aquatic organisms will have to cope with some 
combination of these drivers. The impacts of land-
cover change, global climate change, dams, and 
mining have interactions that are causing large-
scale degradation of the Amazon’s freshwater 

Figure 20.15 Plastic waste discarded in a stream in Manaus in 2021. Source: Rodrigo Duarte/Greenpeace. 
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ecosystems, and current development trends im-
ply dramatic increases in these impacts (Castello 
and Macedo 2016).  

Several of the drivers discussed here can directly 
or indirectly promote deforestation. Hydropower 
dams induce road construction, which in turn 
lead to increased deforestation and agriculture, 
which often also result in more deforestation 
(Finer and Jenkins 2012; Chen et al. 2015; Lees et 
al. 2016; Forsberg et al. 2017; Anderson et al. 
2018). As already explained, regulation of hydro-
logical cycles by dams will isolate large portions of 
floodplains, which will likely be exploited for agri-
culture, further increasing deforestation (Fors-
berg et al. 2017).  

Similarly, the planned waterway in the Tapajós 
sub-basin is likely to encourage further deforesta-
tion directly through increased soy production in 
Mato Grosso. Soy plantations cause aquatic eco-
systems to receive runoff containing fertilizers, 
herbicides, pesticides, and sediment from soil 
erosion (Section 20.6.1). Waterways also reduce 
transportation costs and induce replacement of 
pasture by soy, resulting in indirect land-use 
change, where cattle ranchers sell their land to soy 
farmers and move to other parts of the Amazon, 
clearing forest for cattle pasture (Arima et al. 2011; 
Fearnside 2015c) (see Chapters 14 and 15).  

One impact of waterways is that they serve to jus-
tify hydroelectric dams regardless of how severe 
the impacts may be. Without a complete sequence 
of dams on a river, the entire waterway would 
cease to function because barges cannot pass rap-
ids and waterfalls, which are eliminated by reser-
voirs. The Tocantins/Araguaia waterway (Fearn-
side 2002b) and the Tapajós waterway (Fearnside 
2015c) both serve as examples. In the case of the 
Madeira River, a plan for 4,000 km of waterways in 
the Amazon portion of Bolivia, intended to trans-
port soybeans, was used as an argument in the vi-
ability study for Brazil’s Santo Antônio and Jirau 
Dams (Fearnside 2014a,b).  

Exploitation of new sources of energy, such as oil, 
usually require road construction, hence defor-
estation (Anderson et al. 2018; Fearnside 2020b). 
Oil exploitation also has strong combined effects 
with dams, devastating aquatic biota where these 
drivers intersect (Anderson et al. 2019). Indirect 
effects of oil exploitation, such as road building 
and consequent deforestation, can lead to frag-
mentation of aquatic connectivity or habitat loss 
for migratory species, further aggravating the ef-
fects of dams and waterways. In the Peruvian Am-
azon, the Interoceanic Highway has had a dual im-
pact on the rivers and associated terrestrial eco-
systems. As shown by satellite imagery, this road 
promoted land-use change due to agricultural ex-
pansion in the north, while at the same time facil-
itating access to previously pristine forests along 
the Malinowsky and Inambari Rivers for the ex-
traction of alluvial gold (Finer et al. 2018; Sánchez-
Cuervo et al. 2020).  

Climate-induced increases in the severity of 
droughts and lengthening dry seasons will lead to 
further deforestation and fires (Malhi et al. 2009). 
The effects of climate change will also interact 
with other anthropogenic impacts. Warming 
trends will increase water temperatures, increas-
ing the toxicity of pollutants to organisms and bi-
oaccumulation of mercury in aquatic food webs 
(Ficke et al. 2007; Val 2019). The expected trend of 
declining discharges in the Amazon Basin, except 
in the western part (Sorribas et al. 2016; Farinosi 
et al. 2019), could result in fish biodiversity loss of 
up to 12% in the Amazon Basin and 23% in the To-
cantins Basin (Xenopoulos et al. 2005). Droughts 
and decreased river discharge are also expected to 
impact fish community composition, population 
size and structure, reproduction, and recruitment 
(Poff et al. 2001; Lake 2003; Freitas et al. 2013; 
Frederico et al. 2016).  

Increased temperatures and reduced oxygen con-
centrations resulting from reduced water vol-
umes are expected to be detrimental for many 
aquatic organisms, including fish (Lake 2003; 
Ficke et al. 2007; Frederico et al. 2016; Nelson and 
Val 2016; Gonçalves et al. 2018; Lapointe et al. 
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2018; Campos et al. 2019). In adult organisms, en-
ergy is allocated to growth, reproduction, and 
maintenance metabolism (Val and Almeida-Val 
1995; Almeida-Val et al. 2006; Wootton 1998). The 
surplus energy spent in compensating for in-
creased thermal conditions will therefore come at 
the expense of growth and reproduction, and it is 
likely to increase susceptibility to disease (Ficke et 
al. 2007; Freitas et al. 2012; Oliveira and Val 2017; 
Costa and Val 2020). Higher temperatures are also 
expected to favor eutrophic conditions and to 
stimulate macrophyte development in floodplain 
lakes, modifying food-web dynamics and affect-
ing the fish that depend on them (Ficke et al. 2007).  

Global warming and reduced oxygen availability 
result in shrinking body size in many organisms 
(Sheridan and Bickford 2011), and this is also ex-
pected in fishes (Cheung et al. 2013; Oliveira and 
Val 2017; Pauly and Cheung 2018; Almeida-Silva 
et al. 2020), which could impact fisheries across 
the region. Declining body sizes under global 
warming could lead to ecosystem alteration 
through a trophic cascade for predatory species 
(Estes et al. 2011), or through disruption of carbon 
flows for detritivorous species (Taylor et al. 2006) 
and consequent decreased recruitment because 
reproductive output is proportional to body size in 
most fishes. Expected climate-driven reductions 
of fish size will also further accelerate the fishing-
induced size decreases that have already been ob-
served for commercial species.  

Fragmentation of river networks by hydroelectric 
dams and other infrastructure will constrain po-
tential range shifts of aquatic species to cope with 
expected temperature rise under climate change 
(Myers et al. 2017). Range shifts of fish to higher al-
titudes as a result of climate change have already 
been documented, and river fragmentation by 
dams will block this form of adaptation (Herrera-
R et al. 2020). Andean aquatic species will likely be 
particularly impacted because most dams have 
been built or are planned on Andean tributaries 
(Forsberg et al. 2017; Anderson et al. 2018; 
Tognelli et al. 2019).  

20.12 Conclusions 

Rivers provide connections between widely sepa-
rated aquatic and terrestrial ecosystems through 
flows of water, sediment, and nutrients, and 
through fish migrations. Fragmenting rivers 
therefore has consequences that are far-reaching 
(and often international). 

Clean, free-flowing rivers and their interacting 
floodplain ecosystems generate ecosystem ser-
vices that are important at local, regional, and 
global scales (e.g., fisheries for food security, sed-
iment transport, and carbon sequestration). 

Aquatic ecosystems are particularly prone to cu-
mulative or synergistic impacts. These include the 
effects of multiple dams on rivers and the com-
bined impacts of changes in river flows, oxygen 
levels, water temperatures, and levels of pollution. 

20.13 Recommendations 

• Dams with installed capacity ≥10 MW should 
not be built in the Amazon. Dams with installed 
capacity <10 MW which would power a single 
town or village can be built with the proper en-
vironmental licensing and using a risk-based 
approach. Rather than building Amazonian 
dams, energy policy should prioritize electricity 
conservation, halt exports of energy-intensive 
products, and redirect investment in new elec-
tricity generation to wind and solar sources. 

• Dams with installed capacity <10 MW have sig-
nificant impacts and should not be built to feed 
national or regional grids. The severe cumula-
tive effect of blocking multiple tributaries with 
these dams should also be considered. 

• Decision making processes on infrastructure 
projects should be reformed such that direct 
and indirect environmental and social impacts 
are compiled and democratically debated be-
fore decisions are made. 

• Selected watersheds throughout the Amazon 
need to be preserved for research, long-term 
monitoring, and protection of genetic and spe-
cies diversity. These watersheds will also 
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maintain ecological communities that can be 
needed for recovery efforts. 

• Rivers and streams should be protected by an 
adequate forest border when surrounding land 
is converted to other uses.  

• Better regulation and monitoring of exotic spe-
cies is needed, especially for fish culture. Inter-
basin water diversion projects, which inevitably 
lead to introduction of exotic species, should be 
avoided. 

• Adequate controls are needed on urban sewage, 
plastic pollution, mercury and other heavy met-
als, and on the use of agro-chemicals.  

• Control of sediments and waste from mining is 
needed. 

• Alluvial mining must be banned across the Am-
azon Basin to preserve aquatic biodiversity, 
floodplain forests, and human health. 

• Regional governments and municipalities must 
prioritize the cleaning of sewage water in order 
to preserve the health of aquatic biota and hu-
man populations. 

• Because aquatic resources are not private prop-
erty, they require cooperative arrangements to 
manage their use (including the exclusion of 
outside fishing vessels) and enforcement of re-
strictions on overharvesting. 

• Proper accounting of the greenhouse-gas emis-
sions of Amazonian dams is needed. 
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