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Pescadores vendem peixes frescos em suas canoas, no centro de Manaus (Foto: Bruno Kelly/Amazônia Real) 
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Key Messages & Recommendations 
1) Over the last four decades, and especially over 

the last two, many Amazonian aquatic ecosys-
tems have become less connected and more pol-
luted. Urgent attention should be given to creat-
ing aquatic protected areas, as most existing 
protected areas were designed to safeguard ter-
restrial ecosystems and generally do little to con-
serve aquatic biota. 

2) Prior to the massive impacts of dam construction 
over the past four decades, overexploitation of 
plant and animal species was the most significant 
driver of aquatic ecosystem degradation in the 
Amazon basin. This degradation continues to ad-
vance. Aquatic resources require cooperative ar-
rangements to sustainably manage their use, in-
cluding the exclusion of outside fishing vessels, 
and enforcement of restrictions on overharvest-
ing. 

3) Hydroelectric dams block fish migration and the 
transport of water, sediments and associated nu-
trients. They also alter river flows and oxygen lev-
els. Dams with installed capacity greater than 10 
MW should no longer be built. “Micro” dams, de-
signed to power a single town or village, can be 
built with proper environmental licensing and 
risk-based approaches. In the meantime, energy 
policy should prioritize electricity conservation, 
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halt exports of electricity-intensive products, and 
redirect investment to wind and solar generation. 

4) Selected watersheds throughout the Amazon 
need to be preserved for research, long-term 
monitoring, and the protection of genetic and 
species diversity. These watersheds can also 
maintain ecological communities for recovery ef-
forts. 

 
Abstract Amazonian aquatic ecosystems are being 
destroyed and threats to their integrity are projected 
to grow in number and intensity. Here we present 
some of the main impacts on aquatic ecosystems 
triggered by infrastructure projects and predatory 
and illegal practices.  
 
Introduction The Amazon River annually dis-
charges 6.6 trillion m3 of fresh water to the oceans, 
along with 600-800 million tons of suspended sedi-
ments1. The Amazon’s aquatic biodiversity is glob-
ally significant. So far, 2,406 fish species have been 
described2 (see also Chapter 3), although the actual 
number is likely to be above 3,000 species3. Amazo-
nian rivers and streams also connect distant parts of 
the vast Amazon basin, crucial for fish migration 
and sediment flow. However, these systems are 
fragile and impacts originating at any given location 
may be felt thousands of kilometers away. We list 
below some of the main threats faced by Amazonian
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Figure 20. Existing and planned hydroelectric dams and waterways in Amazonia. Currently there are 307 dams existing or under 
construction; and 239 planned or projected (total = 546) 5.  
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aquatic ecosystems, along with their most im-
portant impacts. Across the Amazon there are 307 
existing and 239 proposed hydroelectric dams, 
ranging from 1 MW installed capacity to some of the 
largest in the world, such as Belo Monte and Tucuruí 
(Figure 20.1)4,5. 
 
Fish communities Hydroelectric dams negatively im-
pact fish communities, both above and below the 
reservoir, due to habitat loss and disconnection, and 
severe changes in the hydrological regimes of 
flooded forests6–9. The conversion of a stretch of 
river from running water (lotic) to still water (lentic) 
eliminates or greatly reduces many species, few of 
which are adapted to the new environment10. Fish 
communities become structurally and functionally 
different from pre-dam baselines11–13. Amazonian 
dams and their ineffective fish passes have already 
seriously disrupted the migration routes of many 
fish species, such as the “giant catfish” of the Ma-
deira River (Brachyplatystoma spp.). 
 
Aquatic mammals, reptiles and insects Dams can frag-
ment populations of dolphins, amphibians, and rep-
tiles. This disrupts gene flow and can result in small, 
vulnerable populations14,15. A number of planned 
dams are particularly threatening to turtles16, be-
cause the beaches on which turtles lay their eggs are 
commonly flooded by reservoirs or when dams alter 
downstream flows17. Dam impacts on aquatic in-
sects vary; species that depend on fast-moving wa-
ter decrease in abundance, while others that breed 
in standing water, such as mosquitos, can undergo 
population explosions18,19.  
 
Greenhouse-gas emissions Amazonian dams contrib-
ute to greenhouse gas emissions in two main ways; 
(1) methane is produced in stratified reservoirs, and 
(2) CO2 is released by decaying trees killed by flood-
ing20–23. The large amount of initial biomass lost 
when a reservoir is flooded (which is especially high 
in tropical forests), in addition to the presence of 
easily oxidized labile carbon in the soil, leads to 
young reservoirs being larger emitters than older 
ones24. Furthermore, trees near the edges of reser-
voirs suffer stress from higher water tables, causing 
additional mortality and CO2 emissions25–27. 

Alteration of sediment flows Dams reduce sediment 
flows by trapping sediments in reservoirs28 and by 
changing the natural hydrologic cycle. Downstream 
of dams, the reduced sediment load results in scour-
ing, or increased erosion of riverbanks and bot-
toms29,30. Sediment reduction also deprives the river 
of nutrients downstream. In the Madeira River, sed-
iment transport downstream of the Santo Antônio 
and Jirau Dams decreased by 20% compared to pre-
dam quantities31, which may have contributed to ob-
served sharp declines in fish catches downstream of 
the dams30,32. Sediments, including suspended or-
ganic matter, form the base of aquatic food chains in 
the lower Amazon33; therefore, reductions in sedi-
ment loads below Andean dams are likely to have 
far-reaching consequences for fish along the entire 
length of the Madeira and Amazon Rivers34. 
  
Alteration of streamflow Dams can impact four hydro-
logical parameters downstream; 1) the frequency 
and 2) duration of high and low water levels (flood 
pulses), and 3) the rate and 4) frequency of changes 
in water levels35. Other impacts on streamflow occur 
when the reservoir is filling, such that downstream 
river stretches dry out during all or part of the filling 
period. The Belo Monte Dam illustrates this effect; 
water flow is greatly reduced in a 130-km stretch 
known as the “big bend of the Xingu River” (Volta 
Grande do Rio Xingu), as 80% of the river’s annual 
flow is diverted. Modifications in the hydrological 
regime directly impact aquatic biodiversity. Fish be-
havior, especially migration and reproduction, is at-
tuned to changes in flow, and false signals caused by 
dams can induce fish to behave in ways that jeop-
ardize their reproductive success36–41. 
 
Roads Dams are not the only type of infrastructure 
that degrade, or even destroy, aquatic systems in the 
Amazon; roads are also an important threat to these 
ecosystems. Amazonian roads are often built with-
out adequate passages for water, such as culverts or 
bridges, fragmenting small tributaries and seasonal 
streams. Roads can act as dams, and their impact on 
seasonal streams is especially strong, causing pond-
ing, blocking the passage of aquatic life, and disrupt-
ing stream connectivity. 
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Navigational waterways and river diversions The 
maintenance of navigational waterways can have 
severe impacts on aquatic ecosystems. Many en-
demic fish species could go extinct when rocky hab-
itats are removed by dynamiting to allow barges to 
pass unimpeded42. In addition to removing rocky 
outcrops, the dredging of river channels deepens 
shallow zones and removes woody debris43, destroy-
ing rich habitats for specific endemic fish fauna44. 
These populations are unlikely to recover. In the Pe-
ruvian Amazon, the recently contracted ~2,700-km 
Hidrovía Amazónica45,46 could significantly alter 
river-channel morphology, impacting fish diversity 
and productivity on which local economies depend.  
 
Fish harvested for human consumption Most 
large, high-valued fish species, such as the giant pi-
rarucu or paiche (Arapaima spp.) and the large fruit-
eating tambaqui or gamitana, are considered over-
fished in their natural ranges47–50. The same applies 
to several of the smaller Characiformes species, 
such as Prochilodus nigricans and Psectrogaster spp.51–
53. Migratory fish are the most at risk from overfish-
ing, accounting for over 90% of landings in the Am-
azon basin and generating  over USD 400 million in 
income54. 
 
Ornamental fish The aquarium fish trade is a grow-
ing, multi-billion dollar industry55,56. Fish are one of 
the most popular pets in the world57, and harvesting 
wild specimens for international trade is a major 
conservation issue55,58,59. The Amazon basin ac-
counts for ~10% of the global trade in freshwater or-
namental fish, with Brazil, Colombia, and Peru as 
the major exporters; in 2007, the total declared 
(greatly underestimated) export value from these 
three countries was about USD 17 million 60. How-
ever, the effects of the ornamental fish trade on nat-
ural populations are poorly studied. Anecdotal in-
formation suggests population collapses or declines 
at some locations in the Rio Negro, such as for discus 
(Symphysodon discus)61 and cardinal tetra (Paracheiro-
don axelrodi)55,62. In the Peruvian Amazon, exploita-
tion has led to reductions of over 50% in ornamental 
species at study locations in terms of abundance, di-
versity, and biomass63. 
 

Invasive species In the Amazon, invasive species 
are used for farming, cultivation of ornamental spe-
cies, and recreational fishing64. Fish introduced to 
lakes and reservoirs are often predatory species 
(Cichla spp., Astronotus spp. or Pygocentrus nattereri), 
feeding on and reducing the abundance of native 
species, with whole-ecosystem consequences in-
cluding habitat loss, interruption of the life span of 
native fish (many invasive species eat the eggs of na-
tive fish), and competition for food, leading to 
changes in species composition and entire food-
webs65–69. In the Andean waters of Bolivia and Peru, 
the introduction of predatory rainbow trout (On-
corhynchus mykiss) resulted in local extirpation or 
greatly reduced abundance of native Astroblepus 
spp.70,71. 
 
Deforestation Forest loss usually results in in-
creased rainfall runoff and discharge. For example, 
deforestation induced a 25% increase in discharge 
in large river systems such as the Tocantins and 
Araguaia Rivers, with little change in precipitation72. 
Increased water runoff and sediment loads alters 
geomorphological and biochemical processes 
downstream, with consequences for soil erosion 
and the biological productivity of aquatic ecosys-
tems72–76. Forest cover loss also results in direct sun 
exposure, reducing evapotranspirative cooling and 
sensible heat flux over land, leading to changes in 
the temperature, oxygen, and chemical content of 
watercourses, greatly affecting aquatic fauna77. For 
example, increased water temperatures and re-
duced oxygen during the dry period can be lethal for 
fish such as cardinal tetras78,79. 
 
Pollution 
 
Agricultural chemicals Pesticides, herbicides, medi-
cines, and other drugs are released into the environ-
ment, and their residence time is undetermined. 
Transition metals and other pollutants present in 
agricultural chemicals may affect local fish species 
differentially depending on their respiration, repro-
duction, trophic position, and metabolic character-
istics80,81. The herbicide glyphosate (Roundup®) and 
the pesticide malathion have been shown to cause 
metabolic and cellular damage in fish exposed to 
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concentrations lower than their 50% lethal concen-
trations (LC50)82,83. The presence of pesticides has 
also been detected in Amazonian river dolphins84,85 
and turtles86. Expansion of soybean production in 
the southern Amazon is of particular concern to 
aquatic ecosystems due to the heavy use of herbi-
cides, including glyphosate. Laboratory experi-
ments on fish have shown that this and other herbi-
cides cause damage to the liver and gills, as well as 
DNA breakage and increased risk of cancer82,83,87. 
 
Oil spills and toxic waste Contamination from crude oil 
and untreated toxic wastes from oil and gas exploi-
tation are notorious in the Amazonian portions of 
Ecuador88 and Peru89,90. In the Ecuadorian Amazon 
between 1972 and 1992, 73 billion liters of crude oil 
was discharged into the environment, nearly twice 
the amount released by the Exxon Valdez oil tanker 
in Alaska91,92. Over this period 43 billion liters of pro-
duced water (oilfield brine) was also released, con-
taining salts that disrupt fish migrations92. Oil is 
toxic to fish93, and oil-associated contamination can 
have far-reaching impacts on Amazonian aquatic 
communities because it can disperse widely, affect-
ing the entire downstream network90,94. Hydrocar-
bon-related toxins have been found in Ecuadorian 
streams at concentrations up to 500 times higher 
than those allowed by European regulations91.  
 
Mining Gold mining is especially prevalent in Brazil 
and Peru, and the scale and impacts of this activity 
is projected to increase substantially if urgent action 
is not taken (Figure 20.2) 4,5,95. It is estimated that the 
mercury shed by gold mining in the Brazilian Ama-
zon totals more than 200,000 tons since the late 19th 
Century96. Gold mining has been estimated to ac-
count for 64% of the mercury entering Amazonian 
aquatic systems97–100. The remaining amount comes 
from natural deposits that are eroded by deforesta-
tion (33%) and from atmospheric deposition, with 
the original source being deforestation and forest 
fires (3%)99,101. At the basin scale, the dynamics of 
mercury involve abiotic physical processes (i.e., 
downstream transport of sediments). Elemental 
mercury can then be turned into toxic methylmer-
cury by specific bacteria in anoxic environments, 

such as those created at the bottom of reservoirs or 
in thermally stratified natural lakes and rivers. 
 
Methylmercury (MeHg) enters aquatic food webs 
and bio-accumulates with trophic levels102,103. Wild-
life is exposed to MeHg through diet103–105. Mercury 
bioaccumulation causes concentrations to increase 
greatly in top predators such as large catfish, black 
caimans, otters, and dolphins106–112. Through fish 
consumption, humans also bioaccumulate mer-
cury; Amazonian populations show some of the 
world’s highest recorded mercury levels in human 
hair, along with associated health issues113. 
 
Urban sewage and plastic waste Urban sewage greatly 
affects aquatic invertebrates, reducing both abun-
dance and species richness114–118. Large amounts of 
plastic are discarded in Amazonian rivers and 
streams and microplastics have been detected in 
river sediments119 and in the sand of coastal beaches 
near the mouth of the Amazon120. Microplastics have 
also been found in fish species at all trophic levels, 
including 13 species from the Xingu River121, and 14 
from the Amazon estuary122. Micro- and nano-plas-
tics affect aquatic ecosystems, and further serve as 
carriers for persistent organic pollutants (POPs)123 
and other chemicals that can provoke hepatic stress 
in fish124. 
 
Interactions among drivers The text above dis-
cusses drivers of degradation separately; however, 
several are highly correlated and often interacting,  
and aquatic organisms will have to cope with com-
binations of these drivers. For example, hydroelec-
tric dams induce road construction, which in turn 
leads to increased deforestation and agricul-
ture34,45,125–127. As already explained, interruptions to 
the hydrological cycle by dams isolates large por-
tions of floodplains, which will likely then be ex-
ploited for agriculture, further increasing deforesta-
tion34. 
 
Similarly, the waterway in the Tapajós sub-basin is 
likely to encourage further deforestation directly 
through increased soy production in Mato Grosso. 
Runoff from soy plantations delivers fertilizers, 
herbicides, pesticides, and sediments from soil ero-
sion to aquatic ecosystems. Waterways reduce 
transportation costs and encourage the transition 
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Figure 20.2 Official mining concessions and illegal activities5. 
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from livestock to soy, resulting in indirect land-use 
change, as cattle ranchers sell their land to soy farm-
ers and clear new parts of the Amazon for pas-
ture128,129. 
 
One impact of waterways is that they justify hydroe-
lectric dams regardless of how severe the negative 
impacts may be. Without a complete set of dams and 
locks on a river, barges cannot pass. They rely on 
reservoirs to eliminate rapids and waterfalls. The 
Tocantins/Araguaia waterway130 and the Tapajós 
waterway128 both serve as examples. In the case of 
the Madeira River, a plan for 4,000 km of waterways 
in the Amazonian portion of Bolivia, intended to 
transport soybeans, was used as an argument to 
support the viability of Brazil’s Santo Antônio and Ji-
rau Dams131,132. 
 
Exploitation of new sources of energy, such as oil, 
usually require road construction, hence deforesta-
tion45,133. Oil exploitation also has strong combined 
effects with dams, devastating aquatic biota where 
these drivers intersect134. In the Peruvian Amazon, 
the Interoceanic highway has had a dual impact on 
the rivers and associated terrestrial ecosystems; 
this road has promoted land-use change due to agri-
culture expansion in the north, while at the same 
time contributing to gold extraction in the Malinow-
sky and Inambari Rivers135,136. 
 
Conclusions The Amazon’s aquatic ecosystems are 
impacted by human actions, especially infrastruc-
ture such as hydroelectric dams, roads, and oil and 
gas exploitation. These impacts have been intensi-
fied by increases in deforestation, pollution by agro-
chemicals, urban and industrial waste, and illegal 
mining. The synergistic effects of these impacts can 
compromise the functioning of ecosystems, leading 
to imbalances in food chains, decreases in species 
abundance, and extinction; this, in turn, has im-
portant effects on human health and ways of life. 
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